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Preface

R is a general purpose statistical software package used in many fields of re-
search. It is licensed for free, as open-source software. The system has been
developed by a large group of people, almost all volunteers. It has a large and
growing user and developer base. Methodologists often release applications for
general use in R shortly after they have been introduced into the literature.
While professional customer support is not provided, there are many resources
to help support users.

We have written this book as a reference text for users of R. Our primary
goal is to provide users with an easy way to learn how to perform an analytic
task in this system, without having to navigate through the extensive, idiosyn-
cratic, and sometimes unwieldy documentation or to sort through the huge
number of add-on packages. We include many common tasks, including data
management, descriptive summaries, inferential procedures, regression analy-
sis, multivariate methods, and the creation of graphics. We also show some
more complex applications. In toto, we hope that the text will facilitate more
efficient use of this powerful system.

We do not attempt to exhaustively detail all possible ways available to
accomplish a given task in each system. Neither do we claim to provide the
most elegant solution. We have tried to provide a simple approach that is easy
to understand for a new user, and have supplied several solutions when it seems
likely to be helpful.

Who should use this book

Those with an understanding of statistics at the level of multiple-regression
analysis should find this book helpful. This group includes professional analysts
who use statistical packages almost every day as well as statisticians, epidemi-
ologists, economists, engineers, physicians, sociologists, and others engaged in
research or data analysis. We anticipate that this tool will be particularly use-
ful for sophisticated users, those with years of experience in only one system,
who need or want to use the other system. However, intermediate-level analysts
should reap the same benefits. In addition, the book will bolster the analytic
abilities of a relatively new user, by providing a concise reference manual and
annotated examples.

xxi



xxii PREFACE

Using the book

The book has two indices, in addition to the comprehensive Table of Contents.
These include: (1) a detailed topic (subject) index in English and (2) an R
command index, describing R syntax.

Extensive example analyses of data from a clinical trial are presented; see
Table A.1 (in the Appendix) for a comprehensive list. These employ a sin-
gle dataset (from the HELP study), described in the Appendix. Readers are
encouraged to download the dataset and code from the book’s Web site. The ex-
amples demonstrate the code in action and facilitate exploration by the reader.

In addition to the HELP examples, Chapter 7 features a varied set of case
studies and extended examples that utilize many of the functions, idioms, and
code samples from the earlier chapters. These include explications of ana-
lytic and empirical power calculations, missing data methods, propensity score
analysis, sophisticated data manipulation, data gleaning from Web sites, map
making, simulation studies, and optimization. Entries from earlier chapters are
cross-referenced to help guide the reader.

Where to begin

We do not anticipate that the book will be read cover to cover. Instead, we
hope that the extensive indexing, cross-referencing, and worked examples will
make it possible for readers to directly find and then implement what they
need. A new user should begin by reading the first chapter, which includes a
sample session and overview of the system. Experienced users may find the
case studies in Chapter 7 to be valuable as a source of ideas on problem solving
in R.

On the Web

The book’s Web site at http://www.math.smith.edu/r includes the Table of
Contents, the Indices, the HELP dataset, example code, and a list of erratum.
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Chapter 1

Introduction to R

This chapter provides a (brief) introduction to R, a powerful and extensible
free software environment for statistical computing and graphics [30, 49]. The
chapter includes a short history, installation information, a sample session,
background on fundamental structures and actions, information about help
and documentation, and other important topics.

R is a general purpose package that includes support for a wide variety of
modern statistical and graphical methods (many of which are included through
user contributed packages). It is available for most UNIX platforms, Windows
and Mac OS. R is part of the GNU project, and is distributed under a free soft-
ware copyleft (http://www.gnu.org/copyleft/gpl.html). The R Foundation
for Statistical Computing holds and administers the copyright of R software and
documentation.

The first versions of R were written by Ross Ihaka and Robert Gentleman
at the University of Auckland, New Zealand, while current development is co-
ordinated by the R Development Core Team, a committed group of volunteers.
As of February 2010 this consisted of Douglas Bates, John Chambers, Peter
Dalgaard, Seth Falcon, Robert Gentleman, Kurt Hornik, Stefano Iacus, Ross
Ihaka, Friedrich Leisch, Thomas Lumley, Martin Maechler, Duncan Murdoch,
Paul Murrell, Martyn Plummer, Brian Ripley, Deepayan Sarkar, Duncan Tem-
ple Lang, Luke Tierney, and Simon Urbanek. Many hundreds of other people
have contributed to the development or created add-on libraries and packages
on a volunteer basis [20].

R is similar to the S language, a flexible and extensible statistical envi-
ronment originally developed in the 1980s at AT&T Bell Labs (now Lucent
Technologies). Insightful Corporation has continued the development of S in
their commercial software package S-PLUS™.

New users are encouraged to download and install R from the Compre-
hensive R archive network (CRAN) (Section 1.1), then review this chapter.
The sample session in the Appendix of the Introduction to R document, also
available from CRAN (see Section 1.2), is also helpful to get an overview.

1

http://www.gnu.org/copyleft/gpl.html
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Figure 1.1: Windows graphical user interface.

1.1 Installation

The home page for the R project, located at http://r-project.org, is the
best starting place for information about the software. It includes links to
CRAN, which features precompiled binaries as well as source code for R, add-on
packages, documentation (including manuals, frequently asked questions, and
the R newsletter) as well as general background information. Mirrored CRAN
sites with identical copies of these files exist all around the world. New versions
are regularly posted on CRAN, which must be downloaded and installed.

1.1.1 Installation under Windows

Precompiled distributions of R for Windows are available at CRAN. Two ver-
sions of the executable are installed: Rgui.exe, which launches a self-contained
windowing system that includes a command-line interface, and Rterm.exe
which is suitable for batch or command-line use. A screenshot of the graphical
user interface (GUI) can be found in Figure 1.1.

The GUI includes a mechanism to save and load the history of commands
from within an interactive session (see also 2.7.4, history of commands).

http://rproject.org
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Figure 1.2: Mac OS X graphical user interface.

More information on Windows-specific issues can be found in the CRAN R
for Windows FAQ (http://cran.r-project.org/bin/windows/base/rw-FAQ.
html).

1.1.2 Installation under Mac OS X

A precompiled universal binary for Mac OS X 10.5 and higher is available
at CRAN. This is distributed as a disk image containing the installer. In
addition to the graphical interface version, a command line version (particularly
useful for batch operations) can be run as the command R. A screenshot of the
graphical interface can be found in Figure 1.2.

The GUI includes a mechanism to save and load the history of commands
from within an interactive session (see also 2.7.4, history of commands). More
information on Macintosh-specific issues can be found in the CRAN R for Mac
OS X FAQ (http://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html).

http://cran.r-project.org/bin/windows/base/rw-FAQ.html
http://cran.r-project.org/bin/windows/base/rw-FAQ.html
http://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html
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1.1.3 Installation under Linux

Precompiled distributions of R binaries are available for the Debian, Redhat
(Fedora), Suse and Ubuntu Linux, and detailed information on installation can
be found at CRAN. There is no built-in graphical user interface for Linux (but
see 1.3 for the R Commander project [19]).

1.2 Running R and sample session

Once installation is complete, the recommended next step for a new user would
be to start R and run a sample session. An example from the command line
interface within Mac OS X is given in Figure 1.3.

The ‘>’ character is the prompt, and commands are executed once the user
presses the RETURN key. R can be used as a calculator (as seen from the first
two commands on lines 1 through 4). New variables can be created (as on lines
5 and 8) using the = assignment operator. If a command generates output (as
on lines 6 to 7 and 11 to 12), then it is printed on the screen, preceded by a
number indicating place in the vector (this is particularly useful if output is
longer than one line, e.g., lines 24 and 25). A dataframe, assigned the name
ds, is read in on line 15, then summary statistics are calculated (lines 21 and
22) and individual observations are displayed (lines 23 and 25). The $ operator
(line 16) allows direct access to objects within a dataframe. Alternatively the
attach() command (line 20) can be used to make objects within a dataset
available in the global workspace from that point forward.

It is important to note that R is case-sensitive, as demonstrated in the
following example.
> x = 1:3
> X = seq(2, 4)
> x
[1] 1 2 3
> X
[1] 2 3 4

A useful sample session can be found in the Appendix A of An Introduction
to R [76] (http://cran.r-project.org/doc/manuals/R-intro.pdf). New
users to R will find it helpful to run the commands from that sample session.

1.2.1 Replicating examples from the book and sourcing
commands

To help facilitate reproducibility, R commands can be bundled into a plain text
file, called a “script” file, which can be executed using the source() command.
The optional argument echo=TRUE for the source() command can be set to
display each command and its output. The book Web site cited above includes

http://cran.r-project.org/doc/manuals/R-intro.pdf
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% R

R version 2.10.1 (2009-12-14)

Copyright (C) 2009 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for online help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

1 > 3+6

2 [1] 9

3 > 2*3

4 [1] 6

5 > x = c(4, 5, 3, 2)

6 > x

7 [1] 4 5 3 2

8 > y = seq(1, 4)

9 > y

10 [1] 1 2 3 4

11 > mean(x)

12 [1] 3.5

13 > sd(y)

14 [1] 1.290994

15 > ds = read.csv("http://www.math.smith.edu/r/data/help.csv")

16 > mean(ds$age)

17 [1] 35.65342

18 > mean(age)

19 Error in mean(age) : object "age" not found

20 > attach(ds)

21 > mean(age)

22 [1] 35.65342

23 > age[1:30]

24 [1] 37 37 26 39 32 47 49 28 50 39 34 58 53 58 60 36 28 35 29 27 27

25 [22] 41 33 34 31 39 48 34 32 35

26 > detach(ds)

27 > q()

28 Save workspace image? [y/n/c]: n

Figure 1.3: Sample session.

http://www.math.smith.edu/r/data/help.csv


6 CHAPTER 1. INTRODUCTION TO R

the R source code for the examples. The sample session in Figure 1.3 can be
executed by running the following command.

> source("http://www.math.smith.edu/r/examples/sampsess.R",
echo=TRUE)

The examples at the end of each chapter can be executed by running the fol-
lowing command, where X is replaced by the desired chapter number.

> source("http://www.math.smith.edu/r/examples/chapterX.R",
echo=TRUE)

Many add-on packages need to be installed prior to running the examples (see
1.7.1). To facilitate this process, we have created a script file to load them in
one step:

> source("http://www.math.smith.edu/r/examples/install.R",
echo=TRUE)

If these libraries are not installed (1.7.1), running the example files at the end
of the chapters will generate error messages.

1.2.2 Batch mode

In addition, R can be run in batch (noninteractive) mode from a command line
interface:

% R CMD BATCH file.R

This will run the commands contained within file.R and put all output into
file.Rout. If an additional argument is given to the command, the value of
that argument is used as the filename containing the output.

Special note for Windows users: to use R in batch mode, you will need
to include R.exe in your path. In Windows XP, this can be accomplished as
follows, assuming the default installation directory set up for R version 2.10.1.
For other versions of R or nondefault installations, the appropriate directory
needs to be specified in the last step.

1. Right-click on “My Computer.”

2. Click “Properties.”

3. Select “Advanced” tab.

4. Press “Environment Variables” button.

5. Click “Path” (to highlight it).

6. Add c:\program files\R\R-2.10.1\bin

http://www.math.smith.edu/r/examples/sampsess.R
http://www.math.smith.edu/r/examples/sampsess.R
http://www.math.smith.edu/r/examples/chapterX.R
http://www.math.smith.edu/r/examples/install.R
http://www.math.smith.edu/r/examples/install.R
http://www.math.smith.edu/r/examples/chapterX.R
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Once this is set up, the previously described R CMD BATCH syntax will work.
Alternatively, changing the current directory to the one printed in step 6 will
allow use of the BATCH syntax without these steps.

1.3 Using the R Commander graphical
interface

R Commander [19] provides a sophisticated graphical user interface with menus,
buttons, information fields and links to help files. Figure 1.4 displays the
view after a linear regression model is fit. R Commander can be installed us-
ing the command install.packages("Rcmdr") (see also 1.7.1) and run using
library(Rcmdr).

Figure 1.4: R Commander graphical user interface.
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1.4 Learning R and getting help

An excellent starting point with R can be found in the Introduction to R,
available from CRAN.

The system includes online documentation, though it can sometimes be
challenging to comprehend. Each command has an associated help file that
describes usage, lists arguments, provides details of actions, references, lists
other related functions, and includes examples of its use. The help system is
invoked using the command:

> ?function

or

> help(function)

where function is the name of the function of interest. As an example, the
help file for the mean() function is accessed by the command help(mean). The
output from this command is provided in Figure 1.5.

The documentation describes the mean() function as a generic function
for the (trimmed) arithmetic mean, with arguments x (an R object), trim
(the fraction of observations to trim, default=0, trim=0.5 is equivalent to the
median), and na.rm (should missing values be deleted, default is na.rm=FALSE).
The function is described as returning a vector with the appropriate mean
applied column by column. Related functions include weighted.mean() and
mean.POSIXct(). Examples of many functions are available by running the
example() function:

> example(mean)
mean> x <- c(0:10, 50)
mean> xm <- mean(x)
mean> c(xm, mean(x, trim = 0.10))
[1] 8.75 5.50

mean> mean(USArrests, trim = 0.2)
Murder Assault UrbanPop Rape
7.42 167.60 66.20 20.16

Other useful resources are help.start(), which provides a set of online man-
uals and help.search(), which can be used to look up entries by description.
The apropos() command returns any functions in the current search list (in-
cluding packages that have been loaded) that match a given pattern. This
facilitates searching for a function based on what it does, as opposed to its
name. The syntax ??pattern can be used to search for strings in the docu-
mentation, while the RSiteSearch() function can be used to search for key
words or phrases in the R-help mailing list archives. In addition, the findFn()
function in library(sos) provides powerful search capabilities.
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mean package:base R Documentation

Arithmetic Mean

Description:

Generic function for the (trimmed) arithmetic mean.

Usage:

mean(x, ...)

## Default S3 method:

mean(x, trim = 0, na.rm = FALSE, ...)

Arguments:

x: An R object. Currently there are methods for numeric data

frames, numeric vectors and dates. A complex vector is

allowed for 'trim = 0', only.

trim: the fraction (0 to 0.5) of observations to be trimmed from

each end of 'x' before the mean is computed. Values of trim

outside that range are taken as the nearest endpoint.

na.rm: a logical value indicating whether 'NA' values should be

stripped before the computation proceeds.

...: further arguments passed to or from other methods.

Value:

For a data frame, a named vector with the appropriate method being

applied column by column.

If 'trim' is zero (the default), the arithmetic mean of the values

in 'x' is computed, as a numeric or complex vector of length one.

If 'x' is not logical (coerced to numeric), integer, numeric or

complex, 'NA' is returned, with a warning.

If 'trim' is non-zero, a symmetrically trimmed mean is computed

with a fraction of 'trim' observations deleted from each end

before the mean is computed.

References:

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S

Language_. Wadsworth & Brooks/Cole.

See Also:

`weighted.mean' `mean.POSIXct' `colMeans' for row and column means.

Examples:

x <- c(0:10, 50)

xm <- mean(x)

c(xm, mean(x, trim = 0.10))

mean(USArrests, trim = 0.2)

Figure 1.5: Documentation on the mean() function.
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Other resources for help available from CRAN include the Introduction to
R (described earlier) and the R-help mailing list (see also Section 1.8, support).
New users are also encouraged to read the FAQ (frequently asked questions)
list.

1.5 Fundamental structures: Objects, classes,
and related concepts

Here we provide a brief introduction to data structures. The Introduction to R
(discussed in Section 1.2) provides more comprehensive coverage.

1.5.1 Objects and vectors

Almost everything is an object, which may be initially disconcerting to a new
user. An object is simply something that R can operate on. Common ob-
jects include vectors, matrices, arrays, factors (see 2.4.16), dataframes (akin to
datasets in other packages), lists, and functions.

The basic variable structure is a vector. Vectors can be created using the =
or <- assignment operators (which assigns the evaluated expression on the right-
hand side of the operator to the object on the left-hand side). For instance, the
following code creates a vector of length 6 using the c() function to concatenate
scalars.

> x = c(5, 7, 9, 13, -4, 8)

Other assignment operators exist, as well as the assign() function (see Section
2.11.8 or help("<-") for more information).

1.5.2 Indexing

Since vector operations are so common, it is important to be able to access
(or index) elements within these vectors. Many different ways of indexing
vectors are available. Here, we introduce several of these, using the above
example. The command x[2] would return the second element of x (the
scalar 7), and x[c(2,4)] would return the vector (7,13). The expressions
x[c(T,T,T,T,T,F)], x[1:5] (first through fifth element) and x[-6] (all ele-
ments except the sixth) would all return a vector consisting of the first five
elements in x. Knowledge and basic comfort with these approaches to vector
indexing is important to effective use of R.

Operations should be carried out wherever possible in a vector fashion (this
is different from some other packages, where data manipulation operations are
typically carried out an observation at a time). For example, the following
commands demonstrate the use of comparison operators.
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> rep(8, length(x))
[1] 8 8 8 8 8 8
> x>rep(8, length(x))
[1] FALSE FALSE TRUE TRUE FALSE FALSE
> x>8
[1] FALSE FALSE TRUE TRUE FALSE FALSE

Note that vectors are reused as needed, as in the last comparison. Only the
third and fourth elements of x are greater than 8. The function returns a logical
value of either TRUE or FALSE. A count of elements meeting the condition can
be generated using the sum() function.

sum(x>8)
[1] 2

The code to create a vector of values greater than 8 is given below.

> largerthan8 = x[x>8]
> largerthan8
[1] 9 13

The command x[x>8] can be interpreted as “return the elements of x for which
x is greater than 8.”This construction is sometimes difficult for some new users,
but is powerful and elegant. Examples of its application in the book can be
found in Sections 2.4.18 and 2.13.4.

Other comparison operators include == (equal), >= (greater than or equal),
<= (less than or equal and != (not equal). Care needs to be taken in the compar-
ison using == if noninteger values are present (see 2.8.5). The which() function
(see 3.1.1) can be used to find observations that match a given expression.

1.5.3 Operators

There are many operators defined to carry out a variety of tasks. Many of these
were demonstrated in the sample section (assignment, arithmetic) and above
examples (comparison). Arithmetic operations include +, -, *, /,ˆ(exponentia-
tion), %% (modulus), and &/& (integer division). More information about oper-
ators can be found using the help system (e.g., ?"+"). Background information
on other operators and precedence rules can be found using help(Syntax).

R supports Boolean operations (OR, AND, NOT, and XOR) using the |,
&, ! operators and the xor() function, respectively.

1.5.4 Lists

Lists are ordered collections of objects that are indexed using the [[ operator
or through named arguments.
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> newlist = list(x1="hello", x2=42, x3=TRUE)
> is.list(newlist)
[1] TRUE
> newlist
$x1
[1] "hello"
$x2
[1] 42
$x3
[1] TRUE
> newlist[[2]]
[1] 42
> newlist$x2
[1] 42

1.5.5 Matrices

Matrices are rectangular objects with two dimensions. We can create a 2 × 3
matrix using our existing vector from Section 1.5.1, display it, and test for its
type with the following commands.

> A = matrix(x, 2, 3)
> A

[,1] [,2] [,3]
[1,] 5 9 -4
[2,] 7 13 8
> dim(A)
[1] 2 3
> # is A a matrix?
> is.matrix(A)
[1] TRUE
> is.vector(A)
[1] FALSE
> is.matrix(x)
[1] FALSE

Comments can be included: any input given after a # character until the next
new line is ignored.

Indexing for matrices is done in a similar fashion as for vectors, albeit with
a second dimension (denoted by a comma).
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> A[2,3]
[1] 8
> A[,1]
[1] 5 7
> A[1,]
[1] 5 9 -4

1.5.6 Dataframes

The main way to access data is through a dataframe, which is more general
than a matrix. This rectangular object, similar to a dataset in other statistics
packages, can be thought of as a matrix with columns of vectors of different
types (as opposed to a matrix, which consists of vectors of the same type). The
functions data.frame(), read.csv(), (see Section 2.1.5) and read.table()
(see 2.1.2) return dataframe objects. A simple dataframe can be created using
the data.frame() command. Access to subelements is achieved using the $
operator as shown below (see also help(Extract)).

In addition, operations can be performed by column (e.g., calculation of
sample statistics):

> y = rep(11, length(x))
> y
[1] 11 11 11 11 11 11
> ds = data.frame(x, y)
> ds

x y
1 5 11
2 7 11
3 9 11
4 13 11
5 -4 11
6 8 11

> is.data.frame(ds)
[1] TRUE
> ds$x[3]
[1] 9
> mean(ds)

x y
6.333333 11.000000
> sd(ds)

x y
5.715476 0.000000
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Note that use of data.frame() differs from the use of cbind() (see 2.5.5),
which yields a matrix object.

> y = rep(11, length(x))
> y
[1] 11 11 11 11 11 11
> newmat = cbind(x, y)
> newmat

x y
[1,] 5 11
[2,] 7 11
[3,] 9 11
[4,] 13 11
[5,] -4 11
[6,] 8 11
> is.data.frame(newmat)
[1] FALSE
> is.matrix(newmat)
[1] TRUE

Dataframes are created from matrices using as.data.frame(), while matrices
can be constructed using as.matrix() or cbind().

Dataframes can be attached using the attach(ds) command (see 2.3.1).
After this command, individual columns can be referenced directly (i.e., x in-
stead of ds$x). By default, the dataframe is second in the search path (after
the local workspace and any previously loaded packages or dataframes). Users
are cautioned that if there is a variable x in the local workspace, this will be
referenced instead of ds$x, even if attach(ds) has been run. Name conflicts
of this type are a common problem and care should be taken to avoid them.

The search() function lists attached packages and objects. To avoid clut-
tering the R workspace, the command detach(ds) should be used once the
dataframe is no longer needed. The with() and within() commands (see
2.3.1 and 6.1.3) can also be used to simplify reference to an object within a
dataframe without attaching.

Sometimes a package (Section 1.7.1) will define a function (Section 1.6) with
the same name as an existing function. This is usually harmless, but to reverse
it, detach the package using the syntax detach("package:PKGNAME"), where
PKGNAME is the name of the package (see 5.7.6).

The names of all variables within a given dataset (or more generally for
subobjects within an object) are provided by the names() command. The
names of all objects defined within an R session can be generated using the
objects() and ls() commands, which return a vector of character strings.
Objects within the workspace can be removed using the rm() command. To
remove all objects, (carefully) run the command rm(list=ls()).

The print() and summary() functions can be used to display brief or more
extensive descriptions, respectively, of an object. Running print(object) at
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the command line is equivalent to just entering the name of the object, i.e.,
object.

1.5.7 Attributes and classes

Objects have a set of associated attributes (such as names of variables, di-
mensions, or classes) which can be displayed or sometimes changed. While a
powerful concept, this can often be initially confusing. For example, we can
find the dimension of the matrix defined in Section 1.5.5.

> attributes(A)
$dim
[1] 2 3

Other types of objects include lists (ordered objects that are not necessarily
rectangular, Section 1.5.4), regression models (objects of class lm), and formulas
(e.g., y ∼ x1 + x2). Examples of the use of formulas can be found in Sections
3.4.1 and 4.1.1.

Many objects have an associated Class attribute, which cause that object
to inherit (or take on) properties depending on the class. Many functions
have special capabilities when operating on a particular class. For example,
when summary() is applied to a lm object, the summary.lm() function is called,
while summary.aov() is called when an aov object is given as argument. The
class() function returns the classes to which an object belongs, while the
methods() function displays all of the classes supported by a function (e.g.,
methods(summary)).

The attributes() command displays the attributes associated with an
object, while the typeof() function provides information about the object
(e.g., logical, integer, double, complex, character, and list).

1.5.8 Options

The options() function can be used to change various default behaviors, for
example, the default number of digits to display in output can be specified
using the command options(digits=n) where n is the preferred number (see
2.13.1). The command help(options) lists all of the other settable options.

1.6 Built-in and user-defined functions

1.6.1 Calling functions

Fundamental actions are carried out by calling functions (either built-in or
user-defined), as seen previously. Multiple arguments may be given, separated
by commas. The function carries out operations using these arguments using a
series of predefined expressions, then returns values (an object such as a vector
or list) that are displayed (by default) or saved by assignment to an object.
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As an example, the quantile() function takes a vector and returns the
minimum, 25th percentile, median, 75th percentile and maximum, though if an
optional vector of quantiles is given, those are calculated instead.

> vals = rnorm(1000) # generate 1000 standard normals
> quantile(vals)

0% 25% 50% 75% 100%
-3.1180 -0.6682 0.0180 0.6722 2.8629
> quantile(vals, c(.025, .975))
2.5% 97.5%
-2.05 1.92

Return values can be saved for later use.

> res = quantile(vals, c(.025, .975))
> res[1]
2.5%
-2.05

Options are available for many functions. These are named arguments for the
function, and are generally added after the other arguments, also separated
by commas. The documentation specifies the default action if named argu-
ments (options) are not specified. For the quantile() function, there is a
type() option which allows specification of one of nine algorithms for calculat-
ing quantiles. Setting type=3 specifies the “nearest even order statistic” option,
which is the default for some other packages.

res = quantile(vals, c(.025, .975), type=3)

Some functions allow a variable number of arguments. An example is the
paste() function (see usage in 2.4.6). The calling sequence is described in the
documentation in the following manner.

paste(..., sep=" ", collapse=NULL)

To override the default behavior of a space being added between elements out-
put by paste(), the user can specify a different value for sep (see 7.1.2).

1.6.2 Writing functions

One of the strengths of R is its extensibility, which is facilitated by its program-
ming interface. A new function (here named newfun) is defined in the following
way.

newfun = function(arglist) body
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The body is made up of a series of commands (or expressions), enclosed between
an opening { and a closing }. Here, we demonstrate a function to calculate the
estimated confidence interval for a mean from Section 3.1.7.
# calculate a t confidence interval for a mean
ci.calc = function(x, ci.conf=.95) {

sampsize = length(x)
tcrit = qt(1-((1-ci.conf)/2), sampsize)
mymean = mean(x)
mysd = sd(x)
return(list(civals=c(mymean-tcrit*mysd/sqrt(sampsize),

mymean+tcrit*mysd/sqrt(sampsize)),
ci.conf=ci.conf))

}

Here the appropriate quantile of the t distribution is calculated using the qt()
function, and the appropriate confidence interval is calculated and returned as
a list. The function is stored in the object ci.calc, which can then be run
interactively on our vector from Section 1.5.1.

> ci.calc(x)
$civals
[1] 0.6238723 12.0427943
$ci.conf
[1] 0.95

If only the lower confidence interval is needed, this can be saved as an object.

> lci = ci.calc(x)$civals[1]
> lci
[1] 0.6238723

The default confidence level is 95%; this can be changed by specifying a different
value as the second argument.

> ci.calc(x, ci.conf=0.90)
$civals
[1] 1.799246 10.867421

$ci.conf
[1] 0.9

This is equivalent to running ci.calc(x, 0.90). Other sample programs can
be found in Sections 2.4.22 and 3.6.4 as well as Chapter 7.
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1.6.3 The apply family of functions

Operations are most efficiently carried out using vector or list operations rather
than looping. The apply() function can be used to perform many actions.
While somewhat subtle, the power of the vector language can be seen in this
example. The apply() command is used to calculate column means or row
means of the previously defined matrix in one fell swoop.
> A

[,1] [,2] [,3]
[1,] 5 9 -4
[2,] 7 13 8
> apply(A, 2, mean)
[1] 6 11 2
> apply(A, 1, mean)
[1] 3.333333 9.333333

Option 2 specifies that the mean should be calculated for each column, while
option 1 calculates the mean of each row. Here we see some of the flexibility of
the system, as functions (such as mean()) are also objects that can be passed
as arguments to functions.

Other related functions include lapply(), which is helpful in avoiding loops
when using lists, sapply() (see 2.3.2), and mapply() to do the same for
dataframes and matrices, respectively, and tapply() (see 3.1.2) to perform
an action on subsets of an object.

1.7 Add-ons: Libraries and packages

1.7.1 Introduction to libraries and packages

Additional functionality is added through packages, which consist of libraries
of bundled functions, datasets, examples and help files that can be downloaded
from CRAN. The function install.packages() or the windowing interface
under Packages and Data must be used to download and install packages. The
library() function can be used to load a previously installed package (that
has been previously made available through use of the install.packages()
function). As an example, to install and load the Hmisc package, two commands
are needed:

install.packages("Hmisc")
library(Hmisc)

Once a package has been installed, it can be loaded whenever a new session is
run by executing the function library(libraryname). A package only needs
to be installed once for a given version of R.

If a package is not installed, running the library() command will yield
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an error. Here we try to load the Zelig package (which had not yet been
installed).

> library(Zelig)
Error in library(Zelig) : there is no package called 'Zelig'

> install.packages("Zelig")
trying URL 'http://cran.stat.auckland.ac.nz/cran/bin/macosx/

leopard/contrib/2.10/Zelig_3.4-5.tgz'
Content type 'application/x-gzip' length 14460464 bytes (13.8 Mb)
opened URL
==================================================
downloaded 13.8 Mb

The downloaded packages are in
/var/folders/Tmp/RtmpXaN7Kk/downloaded_packages

> library(Zelig)
Loading required package: MASS
Loading required package: boot
## Zelig (Version 3.4-5, built: 2009-03-13)
## Please refer to http://gking.harvard.edu/zelig for full
## documentation or help.zelig() for help with commands and
## models supported by Zelig.
##
## To cite individual Zelig models, please use the citation
## format printed with each model run and in the documentation.

A user can test whether a package is loaded by running require(packagename);
this will load the library if it is installed, and generate an error message if it
is not. The update.packages() function should be run periodically to ensure
that packages are up-to-date.

As of February 2010, there were 2172 packages available from CRAN [20].
While each of these has met a minimal standard for inclusion, it is important
to keep in mind that packages are created by individuals or small groups, and
not endorsed by the R core group. As a result, they do not necessarily undergo
the same level of testing and quality assurance that the core R system does.
Hadley Wickham’s Crantastic (http://crantastic.org) is a community site
that reviews and tags CRAN packages.

1.7.2 CRAN task views

A very useful resource for finding packages are the Task Views on CRAN (http:
//cran.r-project.org/web/views). These are listings of relevant packages

http://cran.stat.auckland.ac.nz/
http://cran.stat.auckland.ac.nz/
http://gking.harvard.edu/zelig
http://crantastic.org
http://cran.r-project.org/web/views
http://cran.r-project.org/web/views
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within a particular application area (such as multivariate statistics, psycho-
metrics, or survival analysis). Table 1.1 displays the Task Views available as of
January 2010.

Bayesian Bayesian inference
ChemPhys Chemometrics and computational physics
Clinical Trials Design, monitoring, and analysis of clinical trials
Cluster Cluster analysis & finite mixture models
Distributions Probability distributions
Econometrics Computational econometrics
Environmetrics Analysis of ecological and environmental data
Experimental Design Design and analysis of experiments
Finance Empirical finance
Genetics Statistical genetics
Graphics Graphic displays, dynamic graphics, graphic

devices, and visualization
gR Graphical models in R
HPC High-performance and parallel computing with R
Machine Learning Machine and statistical learning
Medical Imaging Medical image analysis
Multivariate Multivariate statistics
NLP Natural language processing
Optimization Optimization and mathematical programming
Pharmacokinetics Analysis of pharmacokinetic data
Psychometrics Psychometric models and methods
Robust Robust statistical methods
Social Sciences Statistics for the social sciences
Spatial Analysis of spatial data
Survival Survival analysis
Time Series Time series analysis

Table 1.1: CRAN Task Views

1.7.3 Installed libraries and packages

Running the command library(help="libraryname")) will display informa-
tion about an installed package (assuming that it has been installed). Entries
in the book that utilize packages include a line specifying how to access that
library (e.g., library(foreign)). Vignettes showcase the ways that a package
can be useful in practice: the command vignette() will list installed vignettes.

As of January 2010, the R distribution comes with the following packages.

base Base R functions

datasets Base R datasets
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grDevices Graphics devices for base and grid graphics

graphics R functions for base graphics

grid A rewrite of the graphics layout capabilities

methods Formally defined methods and classes, plus programming tools

splines Regression spline functions and classes

stats R statistical functions

stats4 Statistical functions using S4 classes

tcltk Interface and language bindings to Tcl/Tk GUI elements

tools Tools for package development and administration

utils R utility functions

These are available without having to run the library() command and are
effectively part of the base system.

1.7.4 Recommended packages

A set of recommended packages are to be included in all binary distributions
of R. As of January 2010, these included the following list.

KernSmooth Functions for kernel smoothing (and density estimation)

MASS Functions and datasets from the main package of Venables and Ripley,
“Modern Applied Statistics with S”

Matrix A Matrix package

boot Functions and datasets for bootstrapping

class Functions for classification (k-nearest neighbor and LVQ)

cluster Functions for cluster analysis

codetools Code analysis tools

foreign Functions for reading and writing data stored by statistical software
like Minitab, S, SAS, SPSS, Stata, Systat, etc.

lattice Lattice graphics, an implementation of Trellis Graphics functions

mgcv Routines for GAMs and other generalized ridge regression problems



22 CHAPTER 1. INTRODUCTION TO R

nlme Fit and compare Gaussian linear and nonlinear mixed-effects models

nnet Software for single hidden layer perceptrons (“feed-forward neural net-
works”) and for multinomial log-linear models

rpart Recursive partitioning and regression trees

spatial Functions for kriging and point pattern analysis from MASS

survival Functions for survival analysis, including penalized likelihood

1.7.5 Packages referenced in the book

Other packages referenced in the book but not included in the R distribution
are listed below (to see more information about a particular package, run the
command citation(package="packagename").

amer Additive mixed models with lme4

chron Chronological objects which can handle dates and times

circular Circular statistics

coda Output analysis and diagnostics for MCMC

coin Conditional inference procedures in a permutation test framework

dispmod Dispersion models

ellipse Functions for drawing ellipses and ellipse-like confidence regions

elrm Exact logistic regression via MCMC

epitools Epidemiology tools

exactRankTests Exact distributions for rank and permutation tests

frailtypack Frailty models using maximum penalized likelihood estimation

gam Generalized additive models

gee Generalized estimation equation solver

GenKern Functions for kernel density estimates

ggplot2 An implementation of the Grammar of Graphics

gmodels Various R programming tools for model fitting

gtools Various R programming tools

Hmisc Harrell miscellaneous functions
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irr Various coefficients of interrater reliability and agreement

lars Least angle regression, lasso and forward stagewise

lme4 Linear mixed-effects models using S4 classes

lmtest Testing linear regression models

lpSolve Interface to Lp solve v. 5.5 to solve linear/integer programs

maps Draw geographical maps

Matching Propensity score matching with balance optimization

MCMCpack Markov Chain Monte Carlo (MCMC) package

mice Multivariate imputation by chained equations

mitools Tools for multiple imputation of missing data

mix Multiple imputation for mixed categorical and continuous data

multcomp Simultaneous inference in general parametric models

multilevel Multilevel functions

nnet Feed-forward neural networks and multinomial log-linear models

nortest Tests for normality

odfWeave Sweave processing of Open Document Format (ODF) files

plotrix Various plotting functions

plyr Tools for splitting, applying and combining data

prettyR Pretty descriptive stats

pscl Political science computational laboratory, Stanford University

pwr Basic functions for power analysis

quantreg Quantile regression

Rcmdr R Commander

RColorBrewer ColorBrewer palettes

reshape Flexibly reshape data

rms Regression modeling strategies

RMySQL R interface to the MySQL database
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ROCR Visualizing the performance of scoring classifiers

RSQLite SQLite interface for R

scatterplot3d 3D scatterplot

sos Search help pages of R packages

sqldf Perform SQL selects on R data frames

survey Analysis of complex survey samples

tmvtnorm Truncated multivariate normal distribution

vcd Visualizing categorical data

VGAM Vector generalized linear and additive models

XML Tools for parsing and generating XML within R

Zelig Everyone’s statistical software [31]

Many of these must be installed and loaded prior to use (see install.packages(),
require(), library() and Section 1.7.1). To facilitate this process, we have
created a script file to load those needed to replicate the example code in one
step (see 1.2.1).

1.7.6 Datasets available with R

A number of datasets are available within the datasets package that is included
in the R distribution. The data() function lists these, while the package option
can be used to specify datasets from within a specific package.

1.8 Support and bugs

Since R is a free software project written by volunteers, there are no paid
support options available directly from the R Foundation. However, extensive
resources are available to help users.

In addition to the manuals, FAQs, newsletter, wiki, task views, and books
listed on the www.r-project.org Web page, there are a number of mailing
lists that exist to help answer questions. Because of the volume of postings,
it is important to carefully read the posting guide at http://www.r-project.
org/posting-guide.html prior to submitting a question. These guidelines are
intended to help leverage the value of the list, to avoid embarrassment, and to
optimize the allocation of limited resources to technical issues.

As in any general purpose statistical software package, bugs exist. More
information about the process of determining whether and how to report a
problem can be found in the R FAQ as well as via the information available
using help(bug.report).

http://www.r-project.org/posting-guide.html
http://www.r-project.org/
http://www.r-project.org/posting-guide.html


Chapter 2

Data management

This chapter reviews basic data management, beginning with accessing external
datasets, such as those stored in spreadsheets, ASCII files, or foreign formats.
Important tasks such as creating datasets and manipulating variables are dis-
cussed in detail. In addition, key mathematical, statistical, and probability
functions are introduced.

2.1 Input

In this section we address aspects of data input. Data are organized in dataframes
(1.5.6), or connected series of rectangular arrays, which can be saved as plat-
form independent objects.

2.1.1 Native dataset
Example: See 5.7

load(file="dir_location\\savedfile") # Windows only
load(file="dir_location/savedfile") # other OS

Forward slash is supported as a directory delimiter on all operating systems;
a double backslash is also supported under Windows. The file savedfile is
created by save() (see 2.2.1).

25
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2.1.2 Fixed format text files

See also 2.1.4 (read more complex fixed files) and 7.4.1 (read variable format
files)
# Windows only
ds = read.table("dir_location\\file.txt", header=TRUE)

# all OS (including Windows)
ds = read.table("dir_location/file.txt", header=TRUE)

Forward slash is supported as a directory delimiter on all operating systems;
a double backslash is also supported under Windows. If the first row of the
file includes the name of the variables, these entries will be used to create
appropriate names (reserved characters such as ‘$’ or ‘[’ are changed to ’.’)
for each of the columns in the dataset. If the first row does not include the
names, the header option can be left off (or set to FALSE), and the variables
will be called V1, V2, . . . Vn. The read.table() function can support reading
from a URL as a filename (see also 2.1.7). Files can be browsed interactively
using file.choose() (see 2.7.7).

2.1.3 Other fixed files

See also 2.1.4 (read more complex fixed files) and 7.4.1 (read variable format
files)

ds = readLines("file.txt")

or

ds = scan("file.txt")

The readLines() function returns a character vector with length equal to the
number of lines read (see also file()). A limit on the number of lines to be
read can be specified through the nrows option. The scan() function returns
a vector.

2.1.4 Reading more complex text files

See also 2.1.2 (read fixed files) and 7.4.1 (read variable format files).
Text data files often contain data in special formats. One common example

is date variables. As an example below we consider the following data.

1 AGKE 08/03/1999 $10.49
2 SBKE 12/18/2002 $11.00
3 SEKK 10/23/1995 $5.00
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tmpds = read.table("file_location/filename.dat")
id = tmpds$V1
initials = tmpds$V2
datevar = as.Date(as.character(tmpds$V3), "%m/%d/%Y")
cost = as.numeric(substring(tmpds$V4, 2))
ds = data.frame(id, initials, datevar, cost)
rm(tmpds, id, initials, datevar, cost)

This task is accomplished by first reading the dataset (with default names from
read.table() denoted V1 through V4). These objects can be manipulated us-
ing as.character() to undo the default coding as factor variables, and coerced
to the appropriate data types. For the cost variable, the dollar signs are re-
moved using the substring() function (Section 2.4.4). Finally, the individual
variables are gathered together as a dataframe.

2.1.5 Comma-separated value (CSV) files
Example: See 2.13.1

Comma-separated value (CSV) files are a common data interchange format
that are straightforward to read and write.

ds = read.csv("dir_location/file.csv")

A limit on the number of lines to be read can be specified through the nrows
option. The command read.csv(file.choose()) can be used to browse files
interactively (see Section 2.7.7). The comma-separated file can be given as a
URL (see 2.1.7).

2.1.6 Reading datasets in other formats
Example: See 6.6

library(foreign)
ds = read.dbf("filename.dbf") # DBase
ds = read.epiinfo("filename.epiinfo") # Epi Info
ds = read.mtp("filename.mtp") # Minitab worksheet
ds = read.octave("filename.octave") # Octave
ds = read.ssd("filename.ssd") # SAS version 6
ds = read.xport("filename.xport") # SAS XPORT file
ds = read.spss("filename.sav") # SPSS
ds = read.dta("filename.dta") # Stata
ds = read.systat("filename.sys") # Systat

The foreign library can read Stata, Epi Info, Minitab, Octave, SAS version
6, SAS Xport, SPSS, and Systat files (with the caveat that SAS version 6 files
may be platform dependent). The read.ssd() function will only work if SAS
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is installed on the local machine (as it needs to run SAS in order to read the
dataset).

2.1.7 URL
Example: See 3.6.1

Data can be read from the Web by specifying a uniform resource locator (URL).
Many of the data input functions also support accessing data in this manner
(see also 2.1.3).

urlhandle = url("http://www.math.smith.edu/r/testdata")
ds = readLines(urlhandle)
or

ds = read.table("http://www.math.smith.edu/r/testdata")

or

ds = read.csv("http://www.math.smith.edu/r/file.csv")

The readLines() function reads arbitrary text, while read.table() can be
used to read a file with cases corresponding to lines and variables to fields
in the file (the header option sets variable names to entries in the first line).
The read.csv() function can be used to read comma-separated values. Access
through proxy servers as well as specification of username and passwords is
provided by the function download.file(). A limit on the number of lines to
be read can be specified through the nrows option.

2.1.8 XML (extensible markup language)

A sample (flat) XML form of the HELP dataset can be found at http://www.
math.smith.edu/r/data/help.xml. The first 10 lines of the file consist of:

<?xml version="1.0" encoding="iso-8859-1" ?>
<TABLE>

<HELP>
<id> 1 </id>
<e2b1 Missing="." />
<g1b1> 0 </g1b1>
<i11 Missing="." />
<pcs1> 54.2258263 </pcs1>
<mcs1> 52.2347984 </mcs1>
<cesd1> 7 </cesd1>

Here we consider reading simple files of this form. While support is available for
reading more complex types of XML files, these typically require considerable
additional sophistication.

http://www.math.smith.edu/r/testdata
http://www.math.smith.edu/r/testdata
http://www.math.smith.edu/r/
http://www.math.smith.edu/r/data/help.xml
http://www.math.smith.edu/r/data/help.xml
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library(XML)
urlstring = "http://www.math.smith.edu/r/data/help.xml"
doc = xmlRoot(xmlTreeParse(urlstring))
tmp = xmlSApply(doc, function(x) xmlSApply(x, xmlValue))
ds = t(tmp)[,-1]

The XML library provides support for reading XML files. The xmlRoot() func-
tion opens a connection to the file, while xmlSApply() and xmlValue() are
called recursively to process the file. The returned object is a character ma-
trix with columns corresponding to observations and rows corresponding to
variables, which in this example are then transposed.

2.1.9 Data entry

x = numeric(10)
data.entry(x)

or
x1 = c(1, 1, 1.4, 123)
x2 = c(2, 3, 2, 4.5)

The data.entry() function opens a spreadsheet that can be used to edit or
otherwise change a vector or dataframe. In this example, an empty numeric
vector of length 10 is created to be populated. The data.entry() function
differs from the edit() function, which leaves the objects given as argument
unchanged, returning a new object with the desired edits (see also fix()).

2.2 Output

2.2.1 Save a native dataset
Example: See 2.13.3

save(robject, file="savedfile")

An object (typically a dataframe, or a list of objects) can be read back into R
using load() (see 2.1.1).

2.2.2 Creating files for use by other packages
Example: See 2.13.3See also 2.2.5 (write XML)

library(foreign)
write.dta(ds, "filename.dta")
write.dbf(ds, "filename.dbf")
write.foreign(ds, "filename.dat", "filename.sas", package="SAS")

http://www.math.smith.edu/r/data/help.xml
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Support for writing datasets for use in other software packages is provided in
the foreign library. It is possible to write files directly in Stata format (see
write.dta()) or DBF format (see write.dbf() or create files with fixed fields
as well as the code to read the file from within Stata, SAS, or SPSS using
write.foreign()).

As an example with a dataset with two numeric variables X1 and X2, the
call to write.foreign() creates one file with the data and the SAS command
file filename.sas, with the following contents.

data ds;
infile "file.dat" dsd lrecl=79;
input x1 x2;

run;

Similar code is created using SPSS syntax by calling write.foreign() with
appropriate package option. Both functions require access to SAS or SPSS to
complete the transfer.

2.2.3 Creating datasets in text format
Example: See 2.13.3

write.csv(ds, file="full_file_location_and_name")

or

write.table(ds, file="full_file_location_and_name")

The sep option to write.table() can be used to change the default delimiter
(space) to an arbitrary value.

2.2.4 Creating HTML formatted output

Output can be created using HTML format to facilitate display on the Web.

library(prettyR)
htmlize("script.R", title="mytitle", echo=TRUE)

The htmlize() function within library(prettyR) can be used to produce
HTML (hypertext markup language) from a script file (see 1.2.1). The cat()
function is used inside the script file (here denoted by script.R) to generate
output. The hwriter library also supports writing objects in HTML format.

2.2.5 Creating XML datasets and output

The XML library provides support for writing XML files (see also 2.1.6, read
foreign files, and further resources).
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2.2.6 Displaying objects
Example: See 2.13.4

print(ds)

or

View(ds)

or

newds = edit(ds)

or
ds[1:10,]
ds[,2:3]

or

ds[,c("x1", "x3", "xk", "x2"]

The print() function lists the contents of the dataframe (or any other object),
while the View() function opens a navigable window with a read-only view. The
contents can be changed using the edit() or fix() functions. Alternatively,
any subset of the dataframe can be displayed on the screen using indexing, as
in the final example. In the second to last example, the first 10 records (rows)
are displayed, then all values for the second and third variables (columns) are
printed on the console. Variables can also be specified by name using a character
vector index (see 1.5.2), as in the last example. The head() function can be
used to display the first (or last) values of a vector, dataset, or other object.

2.2.7 Displaying formatted output
Example: See 4.7.3

We demonstrate displaying formatted output by displaying numbers as U.S.
currency (see also 2.2.6, values of variables in a dataset).

dollarcents = function(x)
return(paste("$", format(round(x*100, 0)/100, nsmall=2),

sep=""))
data.frame(x1, dollarcents(x3), xk, x2)

A function can be defined to format a vector as U.S. dollar and cents by using
the round() function (see 2.8.4) to control the number of digits (2) to the right
of the decimal.

The cat() function can be used to concatenate values and display them on
the console (or route them to a file using the file option). More control on
the appearance of printed values is available through use of format() (control
of digits and justification), sprintf() (use of C-style string formatting) and
prettyNum() (another routine to format using C-style specifications). The
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head() function will display the first values of an object. The sink() function
can be used to redirect output to a file.

2.2.8 Number of digits to display
Example: See 2.13.1

options(digits=n)

The options(digits=n) command can be used to change the default number
of decimal places to display in subsequent output (see also 1.5.8). To affect the
actual significant digits in the data, use the round() function (see 2.8.4).

2.2.9 Automating reproducible analysis and output

It is straightforward to automate report generation using versions of literate
programming (in the sense of Knuth) that facilitate “reproducible analysis” [37]
The formatting of the HELP sections in this book were generated using a variant
of this system due to Russell Lenth [38].

The Sweave() function combines documentation and R code in a source file,
runs the code, taking the output (including text and graphics) and combining it
into an intermediate file (e.g., LATEX file). The Stangle() function just creates a
file containing the code chunks which could be processed using source(). Other
systems (e.g., library(odfWeave) and StatWeave) support Open Document
Format (ODF) files.

2.3 Structure and meta-data

2.3.1 Access variables from a dataset
Example: See 2.13.1

Variable references must contain the name of the object which includes the
variable, unless the object is attached (see below).

attach(ds)
detach(ds)
with(ds, mean(x))

The command attach() will make the variables within the named dataframe
available in the workspace (otherwise they need to be accessed using the syntax
ds$var1). The detach() function removes them from the workspace (and
is recommended when the local version is no longer needed, to avoid name
conflicts). The with() and within() functions provide another way to access
variables within a dataframe without having to worry about later detaching
the dataframe. Many functions (e.g., lm()) allow specification of a dataset to
be accessed using the data option.
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The detach() function is also used to remove a package from the workspace:
more information can be found in Section 1.5.6. This is sometimes needed if a
package overrides a built-in function. The command to detach a package that
loaded using library(packagename) is detach("package:packagename").

2.3.2 Names of variables and their types
Example: See 2.13.1

str(ds)

The command sapply(ds, class) will return the names and classes (e.g.,
numeric, integer or character) of each variable within a dataframe (see also
1.6.3). Running summary(ds) will provide an overview of the distribution of
each column of the dataframe given as argument.

2.3.3 Rename variables in a dataset

names(ds)[names(ds)=="old1"] = "new1"
names(ds)[names(ds)=="old2"] = "new2"
or

ds = within(ds, {new1 = old1; new2 = old2; rm(old1, old2)})

or
library(reshape)
ds = rename(ds, c("old1"="new1", "old2"="new2"))

The names() function returns the list of names associated with an object (see
1.5.6). It is an efficient way to undertake this task, as it involves no copying
of data (just a remapping of the names). The edit() function can be used to
edit names and values.

2.3.4 Add comment to a dataset or variable
Example: See 2.13.1

To help facilitate proper documentation of datasets, it can be useful to provide
some annotation or description.

comment(ds) = "This is a comment about the dataset"

The attributes() function (see 1.5.7) can be used to list all attributes, in-
cluding any comment(), while the comment() function without an assignment
will display the comment, if present.
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2.4 Derived variables and data manipulation

This section describes the creation of new variables as a function of existing
variables in a dataset.

2.4.1 Create string variables from numeric variables

stringx = as.character(numericx)
typeof(stringx)
typeof(numericx)

The typeof() function can be used to verify the type of an object (see also
class(); possible values include logical, integer, double, complex, character,
raw, list, NULL, closure (function), special and builtin (see also Section
1.5.7).

2.4.2 Create numeric variables from string variables

numericx = as.numeric(stringx)
typeof(stringx)
typeof(numericx)

The typeof() function can be used to verify the type of an object (see 2.4.1
and 1.5.7).

2.4.3 Concatenate vectors

newvector = c(x1, x2)

The c() concatenates a set of two (or more vectors), and returns a vector.
Related vector functions for set-like operations include union(), setdiff(),
setequal(), intersect(), unique(), duplicated(), match(), and the %in%
operator.

2.4.4 Extract characters from string variables

get2through4 = substr(x, 2, 4)
get2throughend = substring(x, 2)

The arguments to substr() specify the input vector, start character position
and end character position. For substring(), omitting the end character value
takes all characters from the start to the end of the string.
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2.4.5 Length of string variables

len = nchar(stringx)

The nchar() function returns a vector of lengths of each of the elements of the
string vector given as argument, as opposed to the length() function (Section
2.4.19) returns the number of elements in a vector.

2.4.6 Concatenate string variables

newcharvar = paste(x1, " VAR2 ", x2, sep="")

The above code creates a character variable newcharvar containing the char-
acter vector X1 (which may be coerced from a numeric object) followed by the
string " VAR2 " then the character vector X2. The sep="" option leaves no
additional separation character between these three strings (the default is a
single space, other characters may instead be specified).

2.4.7 Find strings within string variables

matches = grep("pat", stringx)
positions = regexpr("pat", stringx)

> x = c("abc", "def", "abcdef", "defabc")
> grep("abc", x)
[1] 1 3 4
> regexpr("abc", x)
[1] 1 -1 1 4
attr(,"match.length")
[1] 3 -1 3 3
> regexpr("abc", x) < 0
[1] FALSE TRUE FALSE FALSE

The function grep() returns a list of elements in the vector given by stringx
that match the given pattern, while the regexpr() function returns a nu-
meric list of starting points in each string in the list (with −1 if there was
no match). Testing positions < 0 generates a vector of binary indicator of
matches (TRUE=no match, FALSE=a match). The regular expressions sup-
ported within grep and other related routines are quite powerful. For an ex-
ample, Boolean OR expressions can be specified using the | operator, while !
is the not operator. A comprehensive description of these can be found using
help(regex) (see also 1.5.3).
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2.4.8 Find approximate strings

> agrep("favor", "I ask a favour")
[1] 1

The agrep() function utilizes the Levenshtein edit distance (total number of
insertions, deletions and substitutions required to transform one string into
another). By default the threshold is 10% of the pattern length. The function
returns the number of matches (see also 2.4.7).

2.4.9 Replace strings within string variables
Example: See 7.4.2

newstring = gsub("oldpat", "newpat", oldstring)

or
x = "oldpat123"
substr(x, 1, 6) = "newpat"

2.4.10 Split string into multiple strings

> x = "this is a test"
> split = " "
> strsplit(x, split)
[[1]]
[1] "this" "is" "a" "test"
> strsplit(x, "")
[[1]]
[1] "t" "h" "i" "s" " " "i" "s" " " "a" " " "t" "e" "s" "t"

The function strsplit() returns a list of vectors split using the specified ar-
gument. If split is the null string, then the function returns a list of vectors
of single characters.

2.4.11 Remove spaces around string variables

noleadortrail = sub(' +$', '', sub('^ +', '', stringx))

The arguments to sub() consist of a regular expression, a substitution value
and a vector. In the first step, leading spaces are removed (nothing is included
between single quotes), then a separate call to sub() is used to remove trailing
spaces (in both cases replacing the spaces with the null string). If instead of
spaces all trailing whitespaces (e.g., tabs, space characters) should be removed,
the regular expression ’ +$’ should be replaced by ’[[:space:]]+$’.
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2.4.12 Upper to lower case

lowercasex = tolower(x)

or
lowercasex = chartr("ABCDEFGHIJKLMNOPQRSTUVWXYZ",

"abcdefghijklmnopqrstuvwxzy", x)

The toupper() function can be used to convert to upper case. Arbitrary trans-
lations from sets of characters can be made using the chartr() function.

2.4.13 Create categorical variables from continuous
variables

Example: See 2.13.5 and 5.7.7
newcat1 = (x >= minval) + (x >= cutpoint1) + ... +

(x >= cutpointn)

Each expression within parentheses is a logical test returning 1 if the expression
is true, 0 if not true, and NA if x is missing. More information about missing
value coding can be found in Section 2.4.18. The cut() function (2.4.14) can
also be used to divide a continuous variable into intervals.

2.4.14 Recode a categorical variable

A categorical variable can be recoded to have fewer levels.
tmpcat = oldcat
tmpcat[oldcat==val1] = newval1
tmpcat[oldcat==val2] = newval1
...
tmpcat[oldcat==valn] = newvaln
newcat = as.factor(tmpcat)

or
newcat = cut(x, breaks=c(val2, ..., valn),

labels=c("Cut1", "Cut2", ..., "Cutn"), right=FALSE)

Creating the variable can be undertaken in multiple steps. A copy of the old
variable is first made, then multiple assignments are made for each of the new
levels, for observations matching the condition inside the index (see Section
1.5.2). In the final step, the categorical variable is coerced into a factor (class)
variable (see also help("%in%")). Alternatively, the cut() function can be
used to create the factor vector in one operation, by specifying the cut-scores
and the labels.
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2.4.15 Create a categorical variable using logic
Example: See 2.13.5See also 2.4.18 (missing values)

Here we create a trichotomous variable newvar which takes on a missing
value if the continuous non-negative variable oldvar is less than 0, 0 if the
continuous variable is 0, value 1 for subjects in group A with values greater
than 0 but less than 50 and for subjects in group B with values greater than 0
but less than 60, or value 2 with values above those thresholds.

tmpvar = rep(NA, length(oldvar))
tmpvar[oldvar==0] = 0
tmpvar[oldvar>0 & oldvar<50 & group=="A"] = 1
tmpvar[oldvar>0 & oldvar<60 & group=="B"] = 1
tmpvar[oldvar>=50 & group=="A"] = 2
tmpvar[oldvar>=60 & group=="B"] = 2
newvar = as.factor(tmpvar)

Creating the variable is undertaken in multiple steps in this example. A vector
of the correct length is first created containing missing values. Values are
updated if they match the conditions inside the vector index (see Section 1.5.2).
Care needs to be taken in the comparison of oldvar==0 if noninteger values
are present (see 2.8.5).

2.4.16 Formatting values of variables
Example: See 4.7.3

Sometimes it is useful to display category names that are more descriptive than
variable names. In general, we do not recommend using this feature (except
potentially for graphical output), as it tends to complicate communication be-
tween data analysts and other readers of output. In this example, character
labels are associated with a numeric variable (0=Control, 1=Low Dose, and
2=High Dose).

x = c(id1=0, id2=0, id3=1, id4=1, id5=2)
x = factor(x, 0:2, labels=c("Control", "Low Dose", "High Dose"))

For this example, the command x (equivalent to print(x) returns the following
output.
> x

id1 id2 id3 id4 id5
Control Control Low Dose Low Dose High Dose

Levels: Control Low Dose High Dose

Additionally, the names() function can be used to associate a variable with the
identifier (which is by default the observation number). As an example, this
can be used to display the name of a region with the value taken by a particular
variable measured in that region.
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2.4.17 Label variables

As with the values of the categories, sometimes it is desirable to have a longer,
more descriptive variable name (see also formatting variables, 2.4.16).

comment(x) = "This is the label for the variable 'x'"

The label for the variable can be extracted using comment(x) with no assign-
ment or via attribute(x)$comment. In addition, certain commands (e.g., c()
and data.frame()) can give variables named labels.

> c(a=1, b=2)
a b
1 2
> data.frame(x1=1:2, x2=3:4)
x1 x2

1 1 3
2 2 4

2.4.18 Account for missing values
Example: See 2.13.5

Missing values are ubiquitous in most real-world investigations. They are de-
noted by NA. This is a logical constant of length 1 which has no numeric equiv-
alent. The missing value code is distinct from the character string value "NA".
The default behavior for most functions is to return NA if any of the input
vectors have any missing values.

> mean(c(1, 2, NA))
[1] NA
> mean(c(1, 2, NA), na.rm=TRUE)
[1] 1.5
> sum(na.omit(c(1, 2, NA)))
[1] 3
> x = c(1, 3, NA)
> sum(!is.na(x))
[1] 2
> mean(x)
[1] NA
> mean(x, na.rm=TRUE)
[1] 2

The na.rm option is used to override the default behavior and omit missing
values and calculate the result on the complete cases (this or related options
are available for many functions). The ! (not) operator allows counting of the
number of observed values (since is.na() returns a logical set to TRUE if an
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observation is missing). Values can be recoded to missing, as well as omitted
(see 1.4).

# remap values of x with missing value code of 999 to missing
x[x==999] = NA
or
# set 999's to missing
is.na(x) = x==999
# returns a vector of logicals
is.na(x)
# removes observations (rows) that are missing on that variable
na.omit(x)
# removes observations (rows) that are missing any variable
na.omit(ds)

library(Hmisc)
# display patterns of missing variables in a dataframe
na.pattern(ds)

The default of returning NA for functions operating on objects with miss-
ing values can be overridden using options for a particular function by us-
ing na.omit(), adding the na.rm=TRUE option (e.g., for the mean() func-
tion) or specifying an na.action() (e.g., for the lm() function). Common
na.action() functions include na.exclude(), na.omit(), and na.fail().
Arbitrary numeric missing values (999 in this example) can be mapped to R
missing value codes using indexing and assignment. Here all values of x that
are 999 are replaced by the missing value code of NA. The is.na() function
returns a logical vector with TRUE corresponding to missing values (code NA in
R). Input functions like scan() and read.table() have the default argument
na.strings="NA". This can be used to recode on input for situations where
a numeric missing value code has been used. R has other kinds of “missing”
values, corresponding to floating point standards (see also is.infinite() and
is.nan()).

The na.pattern() function can be used to determine the different patterns
of missing values in a dataset. The na.omit() function returns the dataframe
with missing values omitted (if a value is missing for a given row, all obser-
vations are removed, aka listwise deletion). More sophisticated approaches to
handling missing data are generally recommended (see 7.6).
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2.4.19 Observation number
Example: See 2.13.4

> y = c("abc", "def", "ghi")
> x = 1:length(y)
> x
[1] 1 2 3

The length() function returns the number of elements in a vector. This can
be used in conjunction with the : operator (Section 2.11.5) to create a vector
with the integers from 1 to the sample size. Observation numbers might also
be set as case labels as opposed to the row number (see names()).

2.4.20 Unique values
Example: See 2.13.4

uniquevalues = unique(x)
uniquevalues = unique(data.frame(x1, ..., xk))

The unique() function returns each of the unique values represented by the
vector or dataframe denoted by x (see also duplicated()).

2.4.21 Duplicated values

isdup = duplicated(x)

The duplicated() function returns a logical vector consisting of trues if the
value remains unique, and false if it has already been observed.

2.4.22 Lagged variable

A lagged variable has the value of that variable in a previous row (typically the
immediately previous one) within that dataset. The value of lag for the first
observation will be missing (see 2.4.18).

lag1 = c(NA, x[1:(length(x)-1)])

This expression creates a one-observation lag, with a missing value in the first
position, and the first through second to last observation for the remaining
entries. We can write a function to create lags of more than one observation.
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lagk = function(x, k) {
len = length(x)
if (!floor(k)==k) {

cat("k must be an integer")
} else if (k<1 | k>(len-1)) {

cat("k must be between 1 and length(x)-1")
} else {

return(c(rep(NA, k), x[1:(len-k)]))
}

}

> lagk(1:10, 5)
[1] NA NA NA NA NA 1 2 3 4 5

2.4.23 SQL

Structured Query Language (SQL) is used to query and modify databases.
Access to SQL is available through the RMySQL, RSQLite, or sqldf packages.

2.5 Merging, combining, and subsetting
datasets

A common task in data analysis involves the combination, collation, and sub-
setting of datasets. In this section, we review these techniques for a variety of
situations.

2.5.1 Subsetting observations
Example: See 2.13.6

smallds = ds[ds$x==1,]

This example creates a subject of a dataframe consisting of observations where
X = 1. In addition, many functions allow specification of a subset=expression
option to carry out a procedure on observations that match the expression (see
6.6.8).

2.5.2 Random sample of a dataset
Example: See 7.8.1

It is sometimes useful to sample a subset (here quantified as nsamp) of
observations with or without replacement from a larger dataset (see also 2.10.11,
random number seed).
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# permutation of a variable
newx = sample(x, replace=FALSE)

# permutation of a dataset
n = dim(ds)[1] # number of observations
obs = sample(1:n, n, replace=FALSE)
newds = ds[obs,]

By default, the sample() function takes a sample of all values (determined in
this case by determining the number of observations in ds), without replace-
ment. This is equivalent to a permutation of the order of values in the vector.
The replace=TRUE option can be used to override this (e.g., when bootstrap-
ping, see Section 3.1.9). Fewer values can be sampled by specifying the size
option.

2.5.3 Convert from wide to long (tall) format
Example: See 5.7.10See also Section 2.5.4 (reshape from tall to wide)

Sometimes data are available in a different shape than that required for
analysis. One example of this is commonly found in repeated longitudinal
measures studies. In this setting it is convenient to store the data in a wide
or multivariate format with one line per subject, containing subject invariant
factors (e.g., baseline gender), as well as a column for each repeated outcome.
An example would be:

id female inc80 inc81 inc82
1 0 5000 5500 6000
2 1 2000 2200 3300
3 0 3000 2000 1000

where the income for 1980, 1981, and 1982 are included in one row for each id.
In contrast, functions that support repeated measures analyses (5.2.2) typ-

ically require a row for each repeated outcome, such as

id year female inc
1 80 0 5000
1 81 0 5500
1 82 0 6000
2 80 1 2000
2 81 1 2200
2 82 1 3300
3 80 0 3000
3 81 0 2000
3 82 0 1000

In this section and in Section 2.5.4 below, we show how to convert between
these two forms of this example data.
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long = reshape(wide, idvar="id", varying=list(names(wide)[3:5]),
v.names="inc", timevar="year", times=80:82, direction="long")

The list of variables to transpose is provided in the list varying, creating year
as the time variable with values specified by times (more flexible dataset trans-
formations are supported by library(reshape)).

2.5.4 Convert from long (tall) to wide format
Example: See 5.7.10See also Section 2.5.3 (reshape from wide to tall)

wide = reshape(long, v.names="inc", idvar="id", timevar="year",
direction="wide")

This example assumes that the dataset long has repeated measures on inc for
subject id determined by the variable year. See also library(reshape) for
more flexible dataset transformations.

2.5.5 Concatenate datasets

newds = rbind(ds1, ds2)

The result of rbind() is a dataframe with as many rows as the sum of rows in
ds1 and ds2 (see also 2.9.2). Dataframes given as arguments to rbind() must
have the same column names. The similar cbind() function makes a dataframe
with as many columns as the sum of the columns in the input objects.

2.5.6 Sort datasets
Example: See 2.13.6

sortds = ds[order(x1, x2, ..., xk),]

The command sort() can be used to sort a vector, while order() can be used
to determine the order needed to sort a particular vector. The decreasing
option can be used to change the default sort order (for all variables). The
command sort(x) is equivalent to x[order(x)]. As an alternative, the sort
order of a numeric variable can be reversed by specifying -x1 instead of x1.

2.5.7 Merge datasets
Example: See 5.7.12

Merging datasets is commonly required when data on single units are stored
in multiple tables or datasets. We consider a simple example where variables
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id, year, female and inc are available in one dataset, and variables id and
maxval in a second. For this simple example, with the first dataset given as:

id year female inc
1 80 0 5000
1 81 0 5500
1 82 0 6000
2 80 1 2000
2 81 1 2200
2 82 1 3300
3 80 0 3000
3 81 0 2000
3 82 0 1000

and the second given below.

id maxval
2 2400
1 1800
4 1900

The desired merged dataset would look like:

id year female inc maxval
1 1 81 0 5500 1800
2 1 80 0 5000 1800
3 1 82 0 6000 1800
4 2 82 1 3300 2400
5 2 80 1 2000 2400
6 2 81 1 2200 2400
7 3 82 0 1000 NA
8 3 80 0 3000 NA
9 3 81 0 2000 NA
10 4 NA NA NA 1900

newds = merge(ds1, ds2, by=id, all=TRUE)

The all option specifies that extra rows will be added to the output for any
rows that have no matches in the other dataset. Multiple variables can be
specified in the by option; if this is left out all variables in both datasets are
used: see help(merge).
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2.5.8 Drop variables in a dataset
Example: See 2.13.1

It is often desirable to prune extraneous variables from a dataset to simplify
analyses.

ds[,c("x1", "xk")]

The above example created a new dataframe consisting of the variables x1 and
xk. An alternative is to specify the variables to be excluded (in this case the
second):

ds[,names(ds)[-2]]

or

ds[,-2]

More sophisticated ways of listing the variables to be kept are available. For
example, the command ds[,grep("x1|ˆpat", names(ds))] would keep x1
and all variables starting with pat (see also 2.4.7).

2.6 Date and time variables

The date functions return a Date class that represents the number of days since
January 1, 1970. The function as.numeric() can be used to create a numeric
variable with the number of days since 1/1/1970 (see also the chron package).

2.6.1 Create date variable

dayvar = as.Date("2010-04-29")
todays_date = as.Date(Sys.time())

The return value of as.Date() is a Date class object. If converted to numeric
dayvar it represents the number of days between January 1, 1970 and April 29,
2010, while todays_date is the integer number of days since January 1, 1970
(see also 2.1.4).

2.6.2 Extract weekday

wkday = weekdays(datevar)

The variable wkday contains a string with the English name (e.g., "Tuesday")
of the weekday of the datevar object.
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2.6.3 Extract month

monthval = months(datevar)

The function months() returns a string with the English name of the month
(e.g., "April") of the datevar object.

2.6.4 Extract year

yearval = substr(as.POSIXct(datevar), 1, 4)

The as.POSIXct() function returns a string representing the date, with the
first four characters corresponding to the year.

2.6.5 Extract quarter

qrtval = quarters(datevar)

The function quarters() returns a string representing the quarter of the year
(e.g., "Q1" or "Q2") given by the datevar object.

2.6.6 Create time variable

See also 2.7.1 (timing commands)

> arbtime = as.POSIXlt("2010-04-29 17:15:45 NZDT")
> arbtime
[1] "2010-04-29 17:15:45"
> Sys.time()
[1] "2010-04-01 10:12:11 EST"

Two time objects can be compared with the subtraction operator to monitor
elapsed time.

2.7 Interactions with the operating system

2.7.1 Timing commands

system.time({expression})

The expression (e.g., call to any user or system defined function, see 1.5.1)
given as argument to the system.time() function is evaluated, and the user,
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system, and total (elapsed) time is returned. Note that if the expression in-
cludes assignment using the = operator, the expression must be enclosed in
braces as denoted above.

2.7.2 Suspend execution for a time interval

Sys.sleep(numseconds)

The command Sys.sleep() will pause execution for numseconds, with minimal
system impact.

2.7.3 Execute command in operating system

system("ls") # Mac OS X and Linux
shell("dir") # Windows

The command ls lists the files in the current working directory under most op-
erating systems (see 2.7.7 to capture this information). The shell() command
can be used under Windows.

2.7.4 Command history

savehistory()
loadhistory()
history()

The command savehistory() saves the history of recent commands, which
can be reloaded using loadhistory() or displayed using history(). The
timestamp() function can be used to add a date and time stamp to the history.

2.7.5 Find working directory

getwd()

The command getwd() returns the current working directory.
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2.7.6 Change working directory

setwd("dir_location")

The command setwd() changes the current working directory to the (absolute
or relative) pathname given as argument (and silently returns the current di-
rectory). Directory changes can also be done interactively under Windows and
Mac OS X by selecting the Change Working Directory option under the Misc
menu.

2.7.7 List and access files

list.files()

The list.files() command returns a character vector of filenames in the cur-
rent directory (by default). Recursive listings are also supported. The function
file.choose() provides an interactive file browser, and can be given as an ar-
gument to functions such as read.table() (Section 2.1.2) or read.csv() (Sec-
tion 2.1.5). Related file operation functions include file.access(), file.info(),
and files().

2.8 Mathematical functions

2.8.1 Basic functions

minx = min(x)
maxx = max(x)
parallelmin = pmin(x, y) # maximum of each element from x and y
parallelmax = pmin(x, y) # minimum of each element from x and y
meanx = mean(x)
stddevx = sd(x)
absolutevaluex = abs(x)
squarerootx = sqrt(x)
etothex = exp(x)
xtothey = x^y
naturallogx = log(x)
logbase10x = log10(x)
logbase2x = log2(x)
logbasearbx = log(x, base=42)

Some functions (e.g., sd()) operate on a column basis if given a matrix as
argument. The colwise() function in library(plyr) can be used to turn a
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function that operates on a vector into a function that operates column-wise
on a dataframe (see also apply()).

2.8.2 Trigonometric functions

sin(pi)
cos(0)
tan(pi/4)
acos(x)
asin(x)
atan(x)
atan2(x, y)

2.8.3 Special functions

betaxy = beta(x, y)
gammax = gamma(x)
factorialn = factorial(n)
nchooser = choose(n, r)

library(gtools)
nchooser = length(combinations(n, r)[,1])
npermr = length(permutations(n, r)[,1])

The combinations() and permutations() functions return a list of possible
combinations and permutations.

2.8.4 Integer functions

See also 2.2.8 (rounding and number of digits to display)

nextint = ceiling(x)
justint = floor(x)
round2dec = round(x, 2)
roundint = round(x)
keep4sig = signif(x, 4)
movetozero = trunc(x)

The second parameter of the round() function determines how many decimal
places to round (see also as.integer()). The value of movetozero is the same
as justint if x > 0 or nextint if x < 0.
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2.8.5 Comparisons of floating point variables

Because certain floating point values of variables do not have exact decimal
equivalents, there may be some error in how they are represented on a computer.
For example, if the true value of a particular variable is 1/7, the approximate
decimal is 0.1428571428571428. For some operations (for example, tests of
equality), this approximation can be problematic.

> all.equal(0.1428571, 1/7)
[1] "Mean relative difference: 3.000000900364093e-07"
> all.equal(0.1428571, 1/7, tolerance=0.0001)
[1] TRUE

The tolerance option for the all.equal() function determines how many dec-
imal places to use in the comparison of the vectors or scalars (the default
tolerance is set to the underlying lower level machine precision).

2.8.6 Complex numbers

Support for complex numbers is available.

(0+1i)^2

The above expression is equivalent to i2 = −1. Additional support is available
through the complex() function and related routines.

2.8.7 Derivative

Rudimentary support for finding derivatives is available. These functions are
particularly useful for high-dimensional optimization problems (see 2.8.8).

D(expression(x^3), "x")

Second (or higher order) derivatives can be found by repeatedly applying the
D function with respect to X. This function (as well as deriv()) are useful in
numerical optimization (see the nlm(), optim() and optimize() functions).

2.8.8 Optimization problems

R can be used to solve optimization (maximization) problems. As an extremely
simple example, consider maximizing the area of a rectangle with perimeter
equal to 20. Each of the sides can be represented by x and 10-x, with area of
the rectangle equal to x ∗ (10− x).

f = function(x) { return(x*(10-x)) }
optimize(f, interval=c(0, 10), maximum=TRUE)
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Other optimization functions available include nlm(), uniroot(), optim(),
and constrOptim() (see also the CRAN Optimization and Mathematical Pro-
gramming Task View) and the lpSolve package for linear/integer problems.

2.9 Matrix operations

Matrix operations are often needed to implement statistical methods. Matrices
can be created using the matrix() function (see 1.5.5 or below). In addition
to the routines described below, the Matrix library is particularly useful for
manipulation of large as well as sparse matrices.

Throughout this section, we use capital letters to emphasize that a matrix
is described.

2.9.1 Create matrix from vector

In this entry, we demonstrate creating a 2 × 2 matrix.

A =
(

1 2
3 4

)
.

A = matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)

2.9.2 Create matrix from vectors

In this entry, we demonstrate creating a n × k matrix from a set of column
vectors each of length n (see also 4.5.9, design and information matrix).

A = cbind(x1, ..., xk)

This also works to combine appropriately dimensioned matrices, and can be
done using rows with the function rbind() (see also 2.5.5).

2.9.3 Transpose matrix

A = matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
transA = t(A)
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2.9.4 Find dimension of a matrix

A = matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
dim(A)

The dim() function returns the dimension (number of rows and columns) for
rectangular objects (e.g., matrices and dataframes), as opposed to the length()
function, which operates on vectors.

2.9.5 Matrix multiplication

A = matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
Asquared = A %*% A

2.9.6 Component-wise multiplication

A = matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
newmat = A * A

Unlike the matrix multiplication in 2.9.5, the result of this operation is scalar
multiplication of each element in the matrix A, which yields:

newmat =
(

1 4
9 16

)
.

2.9.7 Invert matrix

A = matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
Ainv = solve(A)

2.9.8 Create submatrix

A = matrix(1:12, 3, 4, byrow=TRUE)
Asub = A[2:3, 3:4]

2.9.9 Create a diagonal matrix

A = matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
diagMat = diag(c(1, 4)) # argument is a vector
diagMat = diag(diag(A)) # A is a matrix
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For vector argument, the diag() function generates a matrix with the vector
values as the diagonals and all off-diagonals 0. For matrix A, the diag()
function creates a vector of the diagonal elements (see 2.9.10); a diagonal matrix
with these diagonal entries, but all off-diagonals set to 0 can be created by
running the diag() with this vector as argument.

2.9.10 Create vector of diagonal elements

A = matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
diagVals = diag(A)

2.9.11 Create vector from a matrix

A = matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
newvec = c(A)

2.9.12 Calculate determinant

A = matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
detval = det(A)

2.9.13 Find eigenvalues and eigenvectors

A <- matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
Aev <- eigen(A)
Aeval <- Aev$values
Aevec <- Aev$vectors

The eigen() function in R returns a list consisting of the eigenvalues and
eigenvectors, respectively, of the matrix given as argument.

2.9.14 Calculate singular value decomposition
Example: See 2.10.7

The singular value decomposition of a matrix A is given by A = U ∗diag(Q)∗V T
where UTU = V TV = V V T = I and Q contains the singular values of A.

A = matrix(c(1, 2, 3, 4), 2, 2, byrow=TRUE)
svdres = svd(A)
U = svdres$u
Q = svdres$d
V = svdres$v



PROBABILITY DISTRIBUTIONS AND RANDOM NUMBER 55

The svd() function returns a list with components corresponding to a vector
of singular values, a matrix with columns corresponding to the left singular
values, and a matrix with columns containing the right singular values.

2.10 Probability distributions and random
number generation

R can calculate quantiles and cumulative distribution values as well as generate
random numbers for a large number of distributions. Random variables are
commonly needed for simulation and analysis.

A seed can be specified for the random number generator. This is important
to allow replication of results (e.g., while testing and debugging). Information
about random number seeds can be found in Section 2.10.11.

Table 2.1 summarizes support for quantiles, cumulative distribution func-
tions, and random numbers. Prepend d to the command to compute quantiles
of a distribution dNAME(xvalue, parm1, ..., parmn), p for the cumulative
distribution function, pNAME(xvalue, parm1, ..., parmn), q for the quantile
function qNAME(prob, parm1, ..., parmn), and r to generate random vari-
ables rNAME(nrand, parm1, ..., parmn) where in the last case a vector of
nrand values is the result.

More information on probability distributions can be found in the CRAN
Probability Distributions Task View.

2.10.1 Probability density function
Example: See 2.13.7

Here we use the normal distribution as an example; others are shown in Table
2.1 on the next page.

> dnorm(1.96, mean=0, sd=1)
[1] 0.05844094
> dnorm(0, mean=0, sd=1)
[1] 0.3989423

2.10.2 Cumulative density function

Here we use the normal distribution as an example; others are shown in Table
2.1.

> pnorm(1.96, mean=0, sd=1)
[1] 0.9750021
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Table 2.1: Quantiles, Probabilities, and Pseudorandom Number Generation:
Available Distributions

Distribution NAME
Beta beta

Beta-binomial betabin∗

binomial binom
Cauchy cauchy

chi-square chisq
exponential exp

F f
gamma gamma

geometric geom
hypergeometric hyper
inverse normal inv.gaussian∗

Laplace laplace∗

logistic logis
lognormal lnorm

negative binomial nbinom
normal norm
Poisson pois

Student’s t t
Uniform unif
Weibull weibull

Note: See Section 2.10 for details regarding syntax to call these routines.
∗ The betabin(), inv.gaussian(), and laplace() families of distributions
are available using library(VGAM).

2.10.3 Quantiles of a probability density function

Here we calculate the upper 97.5% percentile of the normal distribution as an
example; others are shown in Table 2.1.

> qnorm(.975, mean=0, sd=1)
[1] 1.959964

2.10.4 Uniform random variables

x = runif(n, min=0, max=1)

The arguments specify the number of variables to be created and the range
over which they are distributed (by default unit interval).
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2.10.5 Multinomial random variables

x = sample(1:r, n, replace=TRUE, prob=c(p1, p2, ..., pr))

Here
∑
r pr = 1 are the desired probabilities (see also rmultinom() in the stats

package as well as the cut() function).

2.10.6 Normal random variables
Example: See 2.13.7

x1 = rnorm(n)
x2 = rnorm(n, mean=mu, sd=sigma)

The arguments specify the number of variables to be created and (optionally)
the mean and standard deviation (default µ = 0 and σ = 1).

2.10.7 Multivariate normal random variables

For the following, we first create a 3 × 3 covariance matrix. Then we gen-
erate 1000 realizations of a multivariate normal vector with the appropriate
correlation or covariance.

library(MASS)
mu = rep(0, 3)
Sigma = matrix(c(3, 1, 2,

1, 4, 0,
2, 0, 5), nrow=3)

xvals = mvrnorm(1000, mu, Sigma)
apply(xvals, 2, mean)

or
rmultnorm = function(n, mu, vmat, tol=1e-07)
# a function to generate random multivariate Gaussians
{

p = ncol(vmat)
if (length(mu)!=p)

stop("mu vector is the wrong length")
if (max(abs(vmat - t(vmat))) > tol)

stop("vmat not symmetric")
vs = svd(vmat)
vsqrt = t(vs$v %*% (t(vs$u) * sqrt(vs$d)))
ans = matrix(rnorm(n * p), nrow=n) %*% vsqrt
ans = sweep(ans, 2, mu, "+")
dimnames(ans) = list(NULL, dimnames(vmat)[[2]])
return(ans)

}
xvals = rmultnorm(1000, mu, Sigma)
apply(xvals, 2, mean)
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The returned object xvals, of dimension 1000×3, is generated from the variance
covariance matrix denoted by Sigma, which has first row and column (3,1,2).
An arbitrary mean vector can be specified using the c() function.

Several techniques are illustrated in the definition of the rmultnorm() func-
tion. The first lines test for the appropriate arguments, and return an error
(see 2.11.3) if the conditions are not satisfied. The singular value decompo-
sition (see 2.9.14) is carried out on the variance covariance matrix, and the
sweep() function is used to transform the univariate normal random variables
generated by rnorm() to the desired mean and covariance. The dimnames()
function applies the existing names (if any) for the variables in vmat, and the
result is returned.

2.10.8 Truncated multivariate normal random variables

library(tmvtnorm)
x = rtmvnorm(n, mean, sigma, lower, upper)

The arguments specify the number of variables to be created, the mean and
standard deviation, and a vector of lower and upper truncation values.

2.10.9 Exponential random variables

x = rexp(n, rate=lambda)

The arguments specify the number of variables to be created and (optionally)
the inverse of the mean (default λ = 1).

2.10.10 Other random variables
Example: See 2.13.7

The list of probability distributions supported can be found in Table 2.1. In
addition to these distributions, the inverse probability integral transform can be
used to generate arbitrary random variables with invertible cumulative density
function F (exploiting the fact that F−1 ∼ U(0, 1)). As an example, consider
the generation of random variates from an exponential distribution with rate
parameter λ, where F (X) = 1 − exp(−λX) = U . Solving for X yields X =
− log(1 − U)/λ. If we generate 500 Uniform(0,1) variables, we can use this
relationship to generate 500 exponential random variables with the desired rate
parameter (see also 7.3.4, sampling from pathological distributions).
lambda = 2
expvar = -log(1-runif(500))/lambda
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2.10.11 Setting the random number seed

The default behavior is a (pseudorandom) seed based on the system clock.
To generate a replicable series of variates, first run set.seed(seedval) where
seedval is a single integer for the default “Mersenne-Twister” random number
generator. For example:

set.seed(42)
set.seed(Sys.time())

More information can be found using help(.Random.seed).

2.11 Control flow, programming, and data
generation

Here we show some basic aspects of control flow, programming, and data gen-
eration (see also 7.2, data generation and 1.6.2, writing functions).

2.11.1 Looping
Example: See 7.1.2

x = numeric(i2-i1+1) # create placeholder
for (i in 1:length(x)) {

x[i] = rnorm(1) # this is slow and inefficient!
}

or (preferably)

x = rnorm(i2-i1+1) # this is far better

Most tasks that could be written as a loop are often dramatically faster if
they are encoded as a vector operation (as in the second and preferred option
above). Examples of situations where loops are particularly useful can be found
in Sections 4.1.6 and 7.1.2. More information on control structures for looping
and conditional processing can be found in help(Control).

2.11.2 Error recovery
Example: See 2.13.2

try(expression, silent=FALSE)

The try() function runs the given expression and traps any errors that may
arise (displaying them on the standard error output device). The related func-
tion geterrmessage() can be used to display any errors.
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2.11.3 Assertions
Example: See 2.10.7 and 2.13.2

Assertions can be useful in data consistency checking and defensive coding.

stopifnot(expr1, ..., exprk)

The stopifnot() function runs the given expressions and returns an error
message if all are not true (see also stop()). As an example, we can consider
two equivalent ways to test that the variable age is non-negative.

stopifnot(age>=0)

or

if (sum(age<0)>=1) stop("at least one age is negative!")

2.11.4 Conditional execution
Example: See 4.7.6 and 6.6.9

if (expression1) { expression2 }

or

if (expression1) { expression2 } else { expression3 }

or

ifelse(expression, x, y)

The if statement, with or without else, tests a single logical statement; it
is not an elementwise (vector) function. If expression1 evaluates to TRUE,
then expression2 is evaluated. The ifelse() function operates on vectors
and evaluates the expression given as expression and returns x if it is TRUE
and y otherwise (see also comparisons, 1.5.2). An expression can include multi-
command blocks of code (in brackets).

2.11.5 Sequence of values or patterns
Example: See 2.13.7

It is often useful to generate a variable consisting of a sequence of values (e.g.,
the integers from 1 to 100) or a pattern of values (1 1 1 2 2 2 3 3 3). This might
be needed to generate a variable consisting of a set of repeated values for use
in a simulation or graphical display.
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# generate
seq(from=i1, to=i2, length.out=nvals)
seq(from=i1, to=i2, by=1)
seq(i1, i2)
i1:i2

rep(value, times=nvals)

or

rep(value, each=nvals)

The seq function creates a vector of length nvals if the length.out op-
tion is specified. If the by option is included, the length is approximately
(i2-i1)/byval. The i1:i2 operator is equivalent to seq(from=i1, to=i2,
by=1). The rep function creates a vector of length nvals with all values equal
to value, which can be a scalar, vector, or list. The each option repeats each
element of value nvals times. The default is times.

As an example, we demonstrate generating data from a linear regression
model (4.1.1) with normal errors of the form:

E[Y |X1, X2] = β0 + β1X1 + β2X2, V ar(Y |X) = 3, Corr(X1, X2) = 0.

The following code implements the model described above for n = 2000. The
table() function (see 3.2.2) is used to check whether the intended distribution
of covariates was achieved, and the coef() and lm() functions can fit a model
using these simulated data.
> n = 2000
> x1 = rep(c(0,1), each=n/2) # x1 resembles 0 0 0 ... 1 1 1
> x2 = rep(c(0,1), times=n/2) # x2 resembles 0 1 0 1 ... 0 1
> beta0 = -1; beta1 = 1.5; beta2 = .5;
> mse = 3
> table(x1, x2)

x2
x1 0 1
0 500 500
1 500 500

> y = beta0 + beta1*x1 + beta2*x2 + rnorm(n, 0, mse)
> coef(lm(y ~ x1 + x2))
(Intercept) x1 x2

-0.965 1.433 0.537
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2.11.6 Grid of values
Example: See 7.8.2

It is straightforward to generate a dataframe with all combinations of two or
more vectors.

> expand.grid(x1=1:3, x2=c("M", "F"))
x1 x2

1 1 M
2 2 M
3 3 M
4 1 F
5 2 F
6 3 F

The expand.grid() function takes two or more vectors or factors and returns
a data frame. The first factors vary fastest.

2.11.7 Reference a variable using a character vector
Example: See 5.7.10

A variable can be referenced using a character vector rather than its actual
name, which can be helpful when programming.

mean(x)
mean(get("x"))

The get() function searches for an object within the workspace, and returns it.
If there is a variable x in the workspace, both of these commands will calculate
its mean. This can be useful when accessing elements within lists, as they can
be referenced symbolically as well.

> newlist = list(x1=3, x2="Yes", x3=TRUE)
> newlist[[2]]
[1] "Yes"
> val="x2"
> newlist[[val]]
[1] "Yes"

2.11.8 Perform an action repeatedly over a set of
variables

Example: See 2.13.5 and 5.7.10
It is often necessary to perform a given function for a series of variables. Here
the square of each of a list of variables is calculated as an example.
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l1 = c("x1", "x2", ..., "xk")
l2 = c("z1", "z2", ..., "zk")
for (i in 1:length(l1)) {

assign(l2[i], eval(as.name(l1[i]))^2)
}

It is not straightforward to refer to objects without evaluating those objects.
Assignments objects given symbolically can be made using the assign() func-
tion. Here a somewhat obscure use of the eval() function is used to evaluate
an expression after the string value in l1 is coerced to be a symbol. This al-
lows the values of the character vectors l1 and l2 to be evaluated (see get(),
help(assign) and help(eval)).

2.12 Further resources

A comprehensive review of introductory statistics in R is accessibly presented
by Verzani [77]. Paul Murrell’s Introduction to Data Technologies text [46] pro-
vides a comprehensive introduction to XML, SQL, and other related technolo-
gies and can be found at http://www.stat.auckland.ac.nz/~paul/ItDT.

2.13 HELP examples

To help illustrate the tools presented in this chapter, we apply many of the
entries to the HELP data. The code for these examples can be downloaded
from http://www.math.smith.edu/r/examples.

2.13.1 Data input

We begin by reading the dataset (2.1.5), keeping only the variables that are
needed (2.5.8).

> options(digits=3)

> options(width=68) # narrow output

> ds = read.csv("http://www.math.smith.edu/r/data/help.csv")

> newds = ds[,c("cesd","female","i1","i2","id","treat","f1a",

+ "f1b","f1c","f1d","f1e","f1f","f1g","f1h","f1i","f1j","f1k",

+ "f1l","f1m","f1n","f1o","f1p","f1q","f1r","f1s","f1t")]

We can then display a summary of the dataset. The default output prints a line
for each variable with its name and additional information; the short option
below limits the output to just the names of the variable.

http://www.stat.auckland.ac.nz/~paul/ItDT
http://www.math.smith.edu/r/examples
http://www.math.smith.edu/r/data/help.csv


64 CHAPTER 2. DATA MANAGEMENT

> attach(newds)

> names(newds)

[1] "cesd" "female" "i1" "i2" "id" "treat" "f1a"
[8] "f1b" "f1c" "f1d" "f1e" "f1f" "f1g" "f1h"
[15] "f1i" "f1j" "f1k" "f1l" "f1m" "f1n" "f1o"
[22] "f1p" "f1q" "f1r" "f1s" "f1t"

> # structure of the first 10 variables

> str(newds[,1:10])

'data.frame': 453 obs. of 10 variables:
$ cesd : int 49 30 39 15 39 6 52 32 50 46 ...
$ female: int 0 0 0 1 0 1 1 0 1 0 ...
$ i1 : int 13 56 0 5 10 4 13 12 71 20 ...
$ i2 : int 26 62 0 5 13 4 20 24 129 27 ...
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ treat : int 1 1 0 0 0 1 0 1 0 1 ...
$ f1a : int 3 3 3 0 3 1 3 1 3 2 ...
$ f1b : int 2 2 2 0 0 0 1 1 2 3 ...
$ f1c : int 3 0 3 1 3 1 3 2 3 3 ...
$ f1d : int 0 3 0 3 3 3 1 3 1 0 ...

We can also display the means of the first 10 variables.

> library(plyr)

> colwise(mean)(newds[,1:10])

cesd female i1 i2 id treat f1a f1b f1c f1d
1 32.8 0.236 17.9 22.6 233 0.497 1.63 1.39 1.92 1.57

Displaying the first few rows of data can give a more concrete sense of what is
in the dataset.
> head(newds, n=5)

cesd female i1 i2 id treat f1a f1b f1c f1d f1e f1f f1g f1h f1i
1 49 0 13 26 1 1 3 2 3 0 2 3 3 0 2
2 30 0 56 62 2 1 3 2 0 3 3 2 0 0 3
3 39 0 0 0 3 0 3 2 3 0 2 2 1 3 2
4 15 1 5 5 4 0 0 0 1 3 2 2 1 3 0
5 39 0 10 13 5 0 3 0 3 3 3 3 1 3 3
f1j f1k f1l f1m f1n f1o f1p f1q f1r f1s f1t

1 3 3 0 1 2 2 2 2 3 3 2
2 0 3 0 0 3 0 0 0 2 0 0
3 3 1 0 1 3 2 0 0 3 2 0
4 0 1 2 2 2 0 NA 2 0 0 1
5 2 3 2 2 3 0 3 3 3 3 3
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2.13.2 Consistency checking

Finally, we can do a consistency check using a series of assertions (2.11.3).

> stopifnot(cesd>=0 & cesd<=60, i1>=0, female==0 | female==1)

The function returns nothing, since the argument is TRUE. We can also assert
something that is not true (all subjects drank), and trap then display the error.

> try(stopifnot(i1>=1))

> geterrmessage()

[1] "Error : i1 >= 1 is not all TRUE\n"

2.13.3 Data output

Saving the dataset in native format (2.2.1) will ease future access. We also add
a comment (2.3.4) to help later users understand what is in the dataset.

> comment(newds) = "HELP baseline dataset"

> comment(newds)

[1] "HELP baseline dataset"

> save(ds, file="savedfile")

Saving it in a text format (e.g., comma separated, 2.2.3) to be read into Excel
will facilitate transfer.

> write.csv(newds, "file.csv")

Other file conversions are supported (2.1.6). As an example, to get data from
R into SAS, the following code generates an ASCII dataset as well as a SAS
command file to read it in to SAS.
> library(foreign)

> write.foreign(newds, "file.dat", "file.sas", package="SAS")

2.13.4 Data display

We begin by consideration of the CESD (Center for Epidemiologic Studies–
Depression) measure of depressive symptoms for this sample at baseline.

The indexing mechanisms in R (see 1.5.2) are helpful in extracting subsets
of a vector.
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> cesd[1:10]

[1] 49 30 39 15 39 6 52 32 50 46

It may be useful to know how many high values there are, and to which obser-
vations they belong:

> cesd[cesd>55]

[1] 57 58 57 60 58 56 58 56 57 56

> # which rows have values this high?

> which(cesd>55)

[1] 64 116 171 194 231 266 295 305 387 415

Similarly, it may be useful to examine the observations with the lowest values.

> sort(cesd)[1:4]

[1] 1 3 3 4

2.13.5 Derived variables and data manipulation

Suppose the dataset arrived with only the individual CESD questions, and not
the sum (total score). We would need to create the CESD score. Four questions
are asked “backwards,” meaning that high values of the response are counted
for fewer points.1 We will approach the backwards questions by reading the
CESD items into a new object. To demonstrate other tools, we will also see if
there are any missing data (2.4.18), and reconstruct how the original creators
of the dataset handled missingness.

> table(is.na(f1g))

FALSE TRUE
452 1

> # reverse code f1d, f1h, f1l and f1p

> cesditems = cbind(f1a, f1b, f1c, (3 - f1d), f1e, f1f, f1g,

+ (3 - f1h), f1i, f1j, f1k, (3 - f1l), f1m, f1n, f1o,

+ (3 - f1p), f1q, f1r, f1s, f1t)

1According to the coding instructions at http://patienteducation.stanford.edu/

research/cesd.pdf.

http://patienteducation.stanford.edu/research/cesd.pdf
http://patienteducation.stanford.edu/research/cesd.pdf
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> nmisscesd = apply(is.na(cesditems), 1, sum)

> ncesditems = cesditems

> ncesditems[is.na(cesditems)] = 0

> newcesd = apply(ncesditems, 1, sum)

> imputemeancesd = 20/(20-nmisscesd)*newcesd

It is prudent to review the results when deriving variables. We will check our
recreated CESD score against the one which came with the dataset. To ensure
that missing data has been correctly coded, we print the subjects with any
missing questions.

> cbind(newcesd, cesd, nmisscesd, imputemeancesd)[nmisscesd>0,]

newcesd cesd nmisscesd imputemeancesd
[1,] 15 15 1 15.8
[2,] 19 19 1 20.0
[3,] 44 44 1 46.3
[4,] 17 17 1 17.9
[5,] 29 29 1 30.5
[6,] 44 44 1 46.3
[7,] 39 39 1 41.1

The output shows that the original variable was calculated incorporating unan-
swered questions counted as if they had been answered with a zero. This con-
forms to the instructions provided with the CESD, but might be questioned on
theoretical grounds.

It is often necessary to create a new variable using logic (2.4.15). In the
HELP study, many subjects reported extreme amounts of drinking (as the base-
line measure was taken while they were in detox). Here, an ordinal measure
of alcohol consumption (abstinent, moderate, high-risk) is created using infor-
mation about average consumption per day in past 30 days prior to detox (i1,
measured in standard drink units) and maximum number of drinks per day
in past 30 days prior to detox (i2). The number of drinks required for each
category differ for men and women according to National Institute of Alcohol
Abuse and Alcoholism (NIAAA) guidelines for physicians [48].
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> # create empty repository for new variable

> drinkstat = character(length(i1))

> # create abstinent group

> drinkstat[i1==0] = "abstinent"

> # create moderate group

> drinkstat[(i1>0 & i1<=1 & i2<=3 & female==1) |

+ (i1>0 & i1<=2 & i2<=4 & female==0)] = "moderate"

> # create highrisk group

> drinkstat[((i1>1 | i2>3) & female==1) |

+ ((i1>2 | i2>4) & female==0)] = "highrisk"

> # do we need to account for missing values?

> is.na(drinkstat) = is.na(i1) | is.na(i2) | is.na(female)

> table(is.na(drinkstat))

FALSE
453

It is always prudent to check the results of derived variables. As a demon-
stration, we display the observations in the 361st through 370th rows of the
data.
> tmpds = data.frame(i1, i2, female, drinkstat)

> tmpds[361:370,]

i1 i2 female drinkstat
361 37 37 0 highrisk
362 25 25 0 highrisk
363 38 38 0 highrisk
364 12 29 0 highrisk
365 6 24 0 highrisk
366 6 6 0 highrisk
367 0 0 0 abstinent
368 0 0 1 abstinent
369 8 8 0 highrisk
370 32 32 0 highrisk

We can focus checks on a subset of observations. Here we show the drinking
data for moderate female drinkers.
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> tmpds[tmpds$drinkstat=="moderate" & tmpds$female==1,]

i1 i2 female drinkstat
116 1 1 1 moderate
137 1 3 1 moderate
225 1 2 1 moderate
230 1 1 1 moderate
264 1 1 1 moderate
266 1 1 1 moderate
394 1 1 1 moderate

Now we create a categorical variable from the CESD variable, with values
greater than 0 and less than 16 in one group, those between 16 and less than
22 in a second, and those 22 and above in a third (see 2.4.13).

> table(cut(cesd, c(0, 16, 22, 60), right=FALSE))

[0,16) [16,22) [22,60)
46 42 364

Basic data description is an early step in analysis. Here we show some summary
statistics related to drinking and gender.

> sum(is.na(drinkstat))

[1] 0

> table(drinkstat, exclude="NULL")

drinkstat
abstinent highrisk moderate

68 357 28

> table(drinkstat, female, exclude="NULL")

female
drinkstat 0 1
abstinent 42 26
highrisk 283 74
moderate 21 7

To display gender in a more direct fashion, we create a new variable.
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> gender = factor(female, c(0,1), c("male","Female"))

> table(female)

female
0 1

346 107

> table(gender)

gender
male Female
346 107

2.13.6 Sorting and subsetting datasets

It is often useful to sort datasets (2.5.6) by the order of a particular variable
(or variables). Here we sort by CESD and drinking.

> detach(newds)

> newds = ds[order(ds$cesd, ds$i1),]

> newds[1:5,c("cesd", "i1", "id")]

cesd i1 id
199 1 3 233
394 3 1 139
349 3 13 418
417 4 4 251
85 4 9 95

It is sometimes necessary to create data that is a subset (2.5.1) of other data.
For example, here we make a dataset which only includes female subjects. First,
we create the subset and calculate a summary value in the resulting dataset.

> females = ds[ds$female==1,]

> attach(females)

> mean(cesd)

[1] 36.9

To test the subsetting, we then display the mean for both genders, as described
in Section 3.1.2.
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> with(ds, mean(cesd[female==1]))

[1] 36.9

> tapply(ds$cesd, ds$female, mean)

0 1
31.6 36.9

> aggregate(ds$cesd, list(ds$female), mean)

Group.1 x
1 0 31.6
2 1 36.9

2.13.7 Probability distributions

Data can easily be generated. As an example, we can find values of the normal
(2.10.6) and t densities, and display them in Figure 2.1.

> x = seq(from=-4, to=4.2, length=100)

> normval = dnorm(x, 0, 1)

> dfval = 1

> tval = dt(x, df=dfval)

> plot(x, normval, type="n", ylab="f(x)", las=1)

> lines(x, normval, lty=1, lwd=2)

> lines(x, tval, lty=2, lwd=2)

> legend(1.1, .395, lty=1:2, lwd=2,

+ legend=c(expression(N(mu == 0,sigma == 1)),

+ paste("t with ", dfval," df", sep="")))

> grid(nx=NULL, ny=NULL, col="darkgray")

Mathematical symbols (6.2.13) representing the parameters of the normal dis-
tribution are included as part of the legend (6.2.15) to help differentiate the
distributions. A grid (6.2.7) is also added.
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Figure 2.1: Comparison of standard normal and t distribution with 1 df.



Chapter 3

Common statistical
procedures

This chapter describes how to generate univariate summary statistics for con-
tinuous variables (such as means, variances, and quantiles), display and analyze
frequency tables and cross-tabulations for categorical variables, and carry out
a variety of one and two sample procedures.

3.1 Summary statistics

3.1.1 Means and other summary statistics
Example: See 3.6.1

xmean = mean(x)

The mean() function accepts a numeric vector or a numeric dataframe as ar-
guments (date objects are also supported). Similar functions include median()
(see 3.1.5 for more quantiles), var(), sd(), min(), max(), sum(), prod(), and
range() (note that the latter returns a vector containing the minimum and
maximum value). The which.max() and which.min() functions can be used
to identify the observation containing the maximum and minimum values, re-
spectively (see also which(), Section 1.5.2).

3.1.2 Means by group
Example: See 2.13.6See also 4.1.6 (fitting regression separately by group)

tapply(y, x, mean)

or

ave(y, as.factor(x), FUN=mean)

73
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or

aggregate(y, list(x1, x2), mean)

The tapply() function applies the specified function given as the third argu-
ment (in this case mean()) to the vector y stratified by every unique set of values
of the list of factors specified x (see also 1.6.3, the apply family of functions).
It returns a vector with length equal to the number of unique set of values of x.
Similar functionality is available using the ave() function (see example(ave)),
which returns a vector of the same length as x with each element equal to the
mean of the subset of observations with the factor level specified by y. The
aggregate() function can be used in a similar manner, with a list of variables
given as argument (see also 2.13.6).

3.1.3 Trimmed mean

mean(x, trim=frac)

The value frac can take on range 0 to 0.5, and specifies the fraction of observa-
tions to be trimmed from each end of x before the mean is computed (frac=0.5
yields the median).

3.1.4 Five-number summary
Example: See 3.6.1

The five-number summary (minimum, 25th percentile, median, 75th percentile,
maximum) is a useful summary of the distribution of observed values.

quantile(x)
fivenum(x)
summary(ds)

The summary() function calculates the five-number summary (plus the mean)
for each of the columns of the vector or dataset given as arguments. The default
output of the quantile() function is the min, 25th percentile, median, 75th
percentile and the maximum. The fivenum() function reports the lower and
upper hinges instead of the 25th and 75th percentiles, respectively.

3.1.5 Quantiles
Example: See 3.6.1

quantile(x, c(.025, .975))
quantile(x, seq(from=.95, to=.975, by=.0125))

Details regarding the calculation of quantiles in quantile() can be found using
help(quantile).
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3.1.6 Centering, normalizing, and scaling

zscoredx = scale(x)

or

zscoredx = (x-mean(x))/sd(x)

The default behavior of scale() is to create a Z-score transformation. The
scale() function can operate on matrices and dataframes, and allows the spec-
ification of a vector of the scaling parameters for both center and scale (see also
sweep(), a more general function).

3.1.7 Mean and 95% confidence interval
Example: See 3.6.4

tcrit = qt(.975, length(x)-1)
ci95 = mean(x) + c(-1,1)*tcrit*sd(x)/sqrt(length(x))

or

t.test(x)$conf.int

While the appropriate 95% confidence interval can be generated in terms of
the mean and standard deviation, it is more straightforward to use the t-test
function to calculate the relevant quantities.

3.1.8 Maximum likelihood estimation of distributional
parameters

Example: See 3.6.1
library(MASS)
fitdistr(x, densityfunction}

Options for densityfunction include beta, cauchy, chi-squared, exponential,
f, gamma, geometric, log-normal, lognormal, logistic, negative binomial,
normal, Poisson, t or weibull.

3.1.9 Bootstrapping a sample statistic

Bootstrapping is a powerful and elegant approach to estimation of sample statis-
tics that can be implemented even in many situations where asymptotic results
are difficult to find or otherwise unsatisfactory [11, 24]. Bootstrapping proceeds
using three steps: First, resample the dataset (with replacement) a specified
number of times (typically on the order of 10,000), calculate the desired statis-
tic from each resampled dataset, then use the distribution of the resampled
statistics to estimate the standard error of the statistic (normal approximation



76 CHAPTER 3. COMMON STATISTICAL PROCEDURES

method), or construct a confidence interval using quantiles of that distribution
(percentile method).

As an example, we consider estimating the standard error and 95% con-
fidence interval for the coefficient of variation (COV), defined as σ/µ, for a
random variable X. Note that for both packages, the user must provide code
(as a function) to calculate the statistic of interest.

library(boot)
covfun = function(x, i) {sd(x[i])/mean(x[i])}
res = boot(x, covfun, R=10000)
print(res)
plot(res)
quantile(res$t, c(.025, .975)) # percentile method

The first argument to the boot() function specifies the data to be bootstrapped
(in this case a vector, though a dataframe can be set up if more than one variable
is needed for the calculation of the sample statistic) as well as a function to
calculate the statistic for each resampling iteration. Here the function covfun()
takes two arguments: The first is the original data (as a vector) and the second
a set of indices into that vector (that represent a given bootstrap sample).

The boot() function returns an object of class boot, with an associated
plot() function that provides a histogram and QQ-plot (see help(plot.boot)).
The return value object (res, above) contains the vector of resampled statistics
(res$t), which can be used to estimate the quantiles or standard error. The
boot.ci() function can be used to generate bias-corrected and accelerated in-
tervals.

3.1.10 Proportion and 95% confidence interval
Example: See 7.1.2

binom.test(sum(x), length(x))
prop.test(sum(x), length(x))

The binom.test() function calculates an exact Clopper–Pearson confidence
interval based on the F distribution [4] using the first argument as the number
of successes and the second argument the number of trials, while prop.test()
calculates an approximate confidence interval by inverting the score test. Both
allow specification of p for the null hypothesis. The conf.level option can be
used to change the default confidence level.
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3.1.11 Tests of normality

library(nortest)
ad.test(x) # Anderson-Darling test
cvm.test(x) # Cramer-von Mises test
lillie.test(x) # Lilliefors (KS) test
pearson.test(x) # Pearson chi-square
sf.test(x) # Shapiro-Francia test

3.2 Contingency tables

3.2.1 Display counts for a single variable
Example: See 3.6.3

Frequency tables display counts of values for a single variable (see also 3.2.2,
cross-classification tables).

count = table(x)
percent = count/sum(count)*100
rbind(count, percent)

Additional marginal displays (in this case the percentages) can be added and
displayed along with the counts.

3.2.2 Display cross-classification table
Example: See 3.6.3

Contingency tables display group membership across categorical (grouping)
variables. They are also known as cross-classification tables, cross-tabulations,
and two-way tables.

mytab = table(y, x)
addmargins(mytab)
prop.table(mytab, 1)

or

xtabs(~ y + x)

or
library(prettyR)
xtab(y ~ x, data=ds)

The addmargins() function adds (by default) the row and column totals to
a table, while prop.table() can be used to calculate row totals (with option
1) and column totals (with option 2). The colSums(), colMeans() functions
(and their equivalents for rows) can be used to efficiently calculate sums and
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means for numeric arrays. Missing values can be displayed using table() by
specifying exclude=NULL.

The xtabs() function can be used to create a contingency table from cross-
classifying factors. Much of the process of displaying tables is automated in the
prettyR library xtab() function (which requires specification of a dataframe
to operate on).

3.2.3 Pearson chi-square statistic
Example: See 3.6.3

chisq.test(x, y)

The chisq.test() command can accept either two factor vectors or a matrix
with counts. By default a continuity correction is used (this can be turned off
using the option correct=FALSE).

3.2.4 Cochran–Mantel–Haenszel test

The Cochran–Mantel–Haenszel test provides an assessment of the relationship
between X2 and X3, stratified by (or controlling for) X1. The analysis provides
a way to adjust for the possible confounding effects of X1 without having to
estimate parameters for them.

mantelhaen.test(x2, x3, x1)

3.2.5 Fisher’s exact test
Example: See 3.6.3

fisher.test(y, x)

or

fisher.test(ymat)

The fisher.test() command can accept either two class vectors or a ma-
trix with counts (here denoted by ymat). For tables with many rows and/or
columns, p-values can be computed using Monte Carlo simulation using the
simulate.p.value option.

3.2.6 McNemar’s test

McNemar’s test tests the null hypothesis that the proportions are equal across
matched pairs, for example, when two raters assess a population.
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mcnemar.test(y, x)

The mcnemar.test() command can accept either two class vectors or a matrix
with counts.

3.3 Bivariate statistics

3.3.1 Epidemiologic statistics
Example: See 3.6.3

It is straightforward to calculate summary measures such as the odds ratio,
relative risk and attributable risk (see also 5.1, generalized linear models).

sum(x==0&y==0)*sum(x==1&y==1)/(sum(x==0&y==1)*sum(x==1&y==0))

or
tab1 = table(x, y)
tab1[1,1]*tab1[2,2]/(tab1[1,2]*tab1[2,1])

or
glm1 = glm(y ~ x, family=binomial)
exp(glm1$coef[2])

or
library(epitools)
oddsratio.fisher(x, y)
oddsratio.wald(x, y)
riskratio(x, y)
riskratio.wald(x, y)

The epitab() function in library(epitools) provides a general interface to
many epidemiologic statistics, while expand.table() can be used to create
individual level data from a table of counts.

3.3.2 Test characteristics

The sensitivity of a test is defined as the probability that someone with the
disease (D=1) tests positive (T=1), while the specificity is the probability that
someone without the disease (D=0) tests negative (T=0). For a dichotomous
screening measure, the sensitivity and specificity can be defined as P (D =
1, T = 1)/P (D = 1) and P (D = 0, T = 0)/P (D = 0), respectively (see also
6.1.17, receiver operating characteristic curves).

sens = sum(D==1&T==1)/sum(D==1)
spec = sum(D==0&T==0)/sum(D==0)
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Sensitivity and specificity for an outcome D can be calculated for each value of
a continuous measure T using the following code.

library(ROCR)
pred = prediction(T, D)
diagobj = performance(pred, "sens", "spec")
spec = slot(diagobj, "y.values")[[1]]
sens = slot(diagobj, "x.values")[[1]]
cut = slot(diagobj, "alpha.values")[[1]]
diagmat = cbind(cut, sens, spec)
head(diagmat, 10)

The ROCR package facilitates the calculation of test characteristics, including
sensitivity and specificity. The prediction() function takes as arguments the
continuous measure and outcome. The returned object can be used to calculate
quantities of interest (see help(performance) for a comprehensive list). The
slot() function is used to return the desired sensitivity and specificity values
for each cut score, where [[1]] denotes the first element of the returned list
(see Section 1.5.4, help(list), and help(Extract)).

3.3.3 Correlation
Example: See 3.6.2 and 6.6.9

pearsoncorr = cor(x, y)
spearmancorr = cor(x, y, method="spearman")
kendalltau = cor(x, y, method="kendall")

or

cormat = cor(cbind(x1, ..., xk))

Tests and confidence intervals for correlations can be generated using the func-
tion cor.test(). Specifying method="spearman" or method="kendall" as an
option to cor() or cor.test() generates the Spearman or Kendall correla-
tion coefficients, respectively. A matrix of variables (created with cbind(),
see 2.9.1) can be used to generate the correlation between a set of variables.
Subsets of the returned correlation matrix can be selected, as demonstrated in
Section 3.6.2. This can save space by avoiding replicating correlations above
and below the diagonal of the correlation matrix. The use option for cor()
specifies how missing values are handled (either "all.obs", "complete.obs",
or "pairwise.complete.obs").

3.3.4 Kappa (agreement)

library(irr)
kappa2(data.frame(x, y))
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The kappa2() function takes a dataframe (see 1.5.6) as argument. Weights can
be specified as an option.

3.4 Two sample tests for continuous variables

3.4.1 Student’s t-test
Example: See 3.6.4

t.test(y1, y2)

or

t.test(y ~ x)

The first example for the t.test() command displays how it can take two
vectors (y1 and y2) as arguments to compare, or in the latter example a single
vector corresponding to the outcome (y), with another vector indicating group
membership (x) using a formula interface (see Sections 1.5.7 and 4.1.1). By
default, the two-sample t-test uses an unequal variance assumption. The option
var.equal=TRUE can be added to specify an equal variance assumption. The
command var.test() can be used to formally test equality of variances.

3.4.2 Nonparametric tests
Example: See 3.6.4

wilcox.test(y1, y2)
ks.test(y1, y2)

library(coin)
median_test(y ~ x)

By default, the wilcox.test() function uses a continuity correction in the nor-
mal approximation for the p-value. The ks.test() function does not calculate
an exact p-value when there are ties. The median test shown will generate an
exact p-value with the distribution="exact" option.

3.4.3 Permutation test
Example: See 3.6.4

library(coin)
oneway_test(y ~ as.factor(x), distribution=approximate(B=bnum))

The oneway_test function in the coin library implements a variety of
permutation-based tests (see also the exactRankTests package). An empir-
ical p-value is generated if distribution=approximate is specified. This is
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asymptotically equivalent to the exact p-value, based on bnum Monte Carlo
replicates.

3.4.4 Logrank test
Example: See 3.6.5

See also 6.1.18 (Kaplan–Meier plot) and 5.3.1 (Cox proportional hazards model)

library(survival)
survdiff(Surv(timevar, cens) ~ x)

If cens is equal to 0, then Surv() treats timevar as the time of censoring,
otherwise the time of the event. Other tests within the G-rho family of Fleming
and Harrington [18] are supported by specifying the rho option.

3.5 Further resources

Verzani [77] and Everitt and Hothorn [13] present comprehensive introductions
for the use of R to fit a common statistical model. Efron and Tibshirani [11]
provide a comprehensive overview of bootstrapping. A readable introduction
to permutation-based inference can be found in [22]. Collett [5] presents an
accessible introduction to survival analysis.

3.6 HELP examples

To help illustrate the tools presented in this chapter, we apply many of the
entries to the HELP data. The code for these examples can be downloaded
from http://www.math.smith.edu/r/examples.

3.6.1 Summary statistics and exploratory data analysis

We begin by reading the dataset.

> options(digits=3)

> options(width=68) # narrows output to stay in the gray box

> ds = read.csv("http://www.math.smith.edu/r/data/help.csv")

> attach(ds)

A first step would be to examine some univariate statistics (3.1.1) for the base-
line CESD (Center for Epidemiologic Studies–Depression measure of depressive
symptoms) score.

We can use functions which produce a set of statistics, such as fivenum(),
or request them singly.

http://www.math.smith.edu/r/data/help.csv
http://www.math.smith.edu/r/examples
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> fivenum(cesd)

[1] 1 25 34 41 60

> mean(cesd); median(cesd)

[1] 32.8

[1] 34

> range(cesd)

[1] 1 60

> sd(cesd)

[1] 12.5

> var(cesd)

[1] 157

We can also generate desired statistics. Here, we find the deciles (3.1.5).

> quantile(cesd, seq(from=0, to=1, length=11))

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1.0 15.2 22.0 27.0 30.0 34.0 37.0 40.0 44.0 49.0 60.0

Graphics can allow us to easily review the whole distribution of the data. Here
we generate a histogram (6.1.9) of CESD, overlaid with its empirical PDF
(6.1.21) and the closest-fitting normal distribution (see Figure 3.1).

> library(MASS)

> hist(cesd, main="distribution of CESD scores", freq=FALSE)

> lines(density(cesd), lty=2, lwd=2)

> xvals = seq(from=min(cesd), to=max(cesd), length=100)

> param = fitdistr(cesd, "normal")

> lines(xvals, dnorm(xvals, param$estimate[1],

+ param$estimate[2]), lwd=2)

3.6.2 Bivariate relationships

We can calculate the correlation (3.3.3) between CESD and MCS and PCS
(mental and physical component scores). First, we show the default correlation
matrix.
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Figure 3.1: Density plot of depressive symptom scores (CESD) plus superim-
posed histogram and normal distribution.

> cormat = cor(cbind(cesd, mcs, pcs))

> cormat

cesd mcs pcs
cesd 1.000 -0.682 -0.293
mcs -0.682 1.000 0.110
pcs -0.293 0.110 1.000

To save space, we can just print a subset of the correlations.

> cormat[c(2, 3), 1]

mcs pcs
-0.682 -0.293
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Figure 3.2 displays a scatterplot (6.1.1) of CESD and MCS, for the female
subjects. The plotting character (6.2.1) is the primary substance (Alcohol,
Cocaine, or Heroin). We add a rug plot (6.2.9) to help demonstrate the marginal
distributions.
> plot(cesd[female==1], mcs[female==1], xlab="CESD", ylab="MCS",

+ type="n", bty="n")

> text(cesd[female==1&substance=="alcohol"],

+ mcs[female==1&substance=="alcohol"],"A")

> text(cesd[female==1&substance=="cocaine"],

+ mcs[female==1&substance=="cocaine"],"C")

> text(cesd[female==1&substance=="heroin"],

+ mcs[female==1&substance=="heroin"],"H")

> rug(jitter(mcs[female==1]), side=2)

> rug(jitter(cesd[female==1]), side=3)
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Figure 3.2: Scatterplot of CESD and MCS for women, with primary substance
shown as the plot symbol.
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3.6.3 Contingency tables

Here we display the cross-classification (contingency) table (3.2.2) of homeless
at baseline by gender, calculate the observed odds ratio (OR, Section 3.3.1),
and assess association using the Pearson χ2 test (3.2.3) and Fisher’s exact test
(3.2.5).

> count = table(substance)

> percent = count/sum(count)*100

> rbind(count, percent)

alcohol cocaine heroin
count 177.0 152.0 124.0
percent 39.1 33.6 27.4

For cross-classification tables, similar syntax is used.

> table(homeless, female)

female
homeless 0 1

0 177 67
1 169 40

The prettyR library provides a way to display tables with additional statistics.

> library(prettyR)

> xtres = xtab(homeless ~ female, data=ds)

Crosstabulation of homeless by female
female

homeless 0 1
0 177 67 244

72.54 27.46 53.86
51.16 62.62

1 169 40 209
80.86 19.14 46.14
48.84 37.38

346 107 453
76.38 23.62

odds ratio = 0.63
relative risk (homeless-1) = 0.7

We can easily calculate the odds ratio directly.
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> or = (sum(homeless==0 & female==0)*

+ sum(homeless==1 & female==1))/

+ (sum(homeless==0 & female==1)*

+ sum(homeless==1 & female==0))

> or

[1] 0.625

> library(epitools)

> oddsobject = oddsratio.wald(homeless, female)

> oddsobject$measure

odds ratio with 95% C.I.
Predictor estimate lower upper

0 1.000 NA NA
1 0.625 0.401 0.975

> oddsobject$p.value

two-sided
Predictor midp.exact fisher.exact chi.square

0 NA NA NA
1 0.0381 0.0456 0.0377

The χ2 and Fisher’s exact tests assess independence between gender and home-
lessness.
> chisqval = chisq.test(homeless, female, correct=FALSE)

> chisqval

Pearson's Chi-squared test

data: homeless and female
X-squared = 4.32, df = 1, p-value = 0.03767

> fisher.test(homeless, female)

Fisher's Exact Test for Count Data

data: homeless and female
p-value = 0.04560
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.389 0.997
sample estimates:
odds ratio

0.626
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The fisher.test() command returns the conditional MLE for the odds ratio,
which is attenuated towards the null value.

3.6.4 Two sample tests of continuous variables

We can assess gender differences in baseline age using a t-test (3.4.1) and non-
parametric procedures.

> ttres = t.test(age ~ female, data=ds)

> print(ttres)

Welch Two Sample t-test

data: age by female
t = -0.93, df = 180, p-value = 0.3537
alternative hypothesis:
true difference in means is not equal to 0

95 percent confidence interval:
-2.45 0.88
sample estimates:
mean in group 0 mean in group 1

35.5 36.3

The names() function can be used to identify the objects returned by the
t.test() function.

> names(ttres)

[1] "statistic" "parameter" "p.value" "conf.int"
[5] "estimate" "null.value" "alternative" "method"
[9] "data.name"

> ttres$conf.int

[1] -2.45 0.88
attr(,"conf.level")
[1] 0.95

A permutation test (3.4.3) can be run to generate a Monte Carlo p-value.
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> library(coin)

> oneway_test(age ~ as.factor(female),

+ distribution=approximate(B=9999), data=ds)

Approximative 2-Sample Permutation Test

data: age by as.factor(female) (0, 1)
Z = -0.92, p-value = 0.3623
alternative hypothesis: true mu is not equal to 0

Similarly, a Wilcoxon nonparametric test (3.4.2) can be requested,

> wilcox.test(age ~ as.factor(female), correct=FALSE)

Wilcoxon rank sum test

data: age by as.factor(female)
W = 17512, p-value = 0.3979
alternative hypothesis: true location shift is not equal to 0

as well as a Kolmogorov–Smirnov test.

> ksres = ks.test(age[female==1], age[female==0], data=ds)

> print(ksres)

Two-sample Kolmogorov-Smirnov test

data: age[female == 1] and age[female == 0]
D = 0.063, p-value = 0.902
alternative hypothesis: two-sided

We can also plot estimated density functions (6.1.21) for age for both groups,
and shade some areas (6.2.14) to emphasize how they overlap (Figure 3.3). We
create a function (see 1.6) to automate this task.

> plotdens = function(x,y, mytitle, mylab) {

+ densx = density(x)

+ densy = density(y)

+ plot(densx, main=mytitle, lwd=3, xlab=mylab, bty="l")

+ lines(densy, lty=2, col=2, lwd=3)

+ xvals = c(densx$x, rev(densy$x))

+ yvals = c(densx$y, rev(densy$y))

+ polygon(xvals, yvals, col="gray")

+ }

The polygon() function is used to fill in the area between the two curves.
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> mytitle = paste("Test of ages: D=", round(ksres$statistic,3),

+ " p=", round(ksres$p.value, 2), sep="")

> plotdens(age[female==1], age[female==0], mytitle=mytitle,

+ mylab="age (in years)")

> legend(50, .05, legend=c("Women", "Men"), col=1:2, lty=1:2,

+ lwd=2)
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Figure 3.3: Density plot of age by gender.

3.6.5 Survival analysis: Logrank test

The logrank test (3.4.4) can be used to compare estimated survival curves be-
tween groups in the presence of censoring. Here we compare randomization
groups with respect to dayslink, where a value of 0 for linkstatus indi-
cates that the observation was censored, not observed, at the time recorded in
dayslink.
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> library(survival)

> survobj = survdiff(Surv(dayslink, linkstatus) ~ treat,

+ data=ds)

> print(survobj)

Call:
survdiff(formula = Surv(dayslink, linkstatus) ~ treat, data = ds)

n=431, 22 observations deleted due to missingness.

N Observed Expected (O-E)^2/E (O-E)^2/V
treat=0 209 35 92.8 36.0 84.8
treat=1 222 128 70.2 47.6 84.8

Chisq= 84.8 on 1 degrees of freedom, p= 0

> names(survobj)

[1] "n" "obs" "exp" "var" "chisq"
[6] "na.action" "call"





Chapter 4

Linear regression and
ANOVA

Regression and analysis of variance (ANOVA) form the basis of many inves-
tigations. In this chapter we describe how to undertake many common tasks
in linear regression (broadly defined), while Chapter 5 discusses many general-
izations, including other types of outcome variables, longitudinal and clustered
analysis, and survival methods.

Many commands can perform linear regression, as it constitutes a special
case of which many models are generalizations. We present detailed descriptions
for the lm() command, as it offers the most flexibility and best output options
tailored to linear regression in particular. While ANOVA can be viewed as
a special case of linear regression, separate routines are available (aov()) to
perform it. We address additional procedures only with respect to output that
is difficult to obtain through the standard linear regression tools.

Many of the routines available return or operate on lm class objects, which
include coefficients, residuals, fitted values, weights, contrasts, model matrices,
and the like (see help(lm)).

The CRAN Task View on Statistics for the Social Sciences provides an
excellent overview of methods described here and in Chapter 5.

4.1 Model fitting

4.1.1 Linear regression
Example: See 4.7.3

mod1 = lm(y ~ x1 + ... + xk, data=ds)
summary(mod1)

or
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form = as.formula(y ~ x1 + ... + xk)
mod1 = lm(form, data=ds)
summary(mod1)

The first argument of the lm() function is a formula object, with the out-
come specified followed by the ∼ operator then the predictors. More in-
formation about the linear model summary() command can be found using
help(summary.lm). By default, stars are used to annotate the output of the
summary() functions regarding significance levels: these can be turned off using
the command options(show.signif.stars=FALSE).

4.1.2 Linear regression with categorical covariates
Example: See 4.7.3

See also 4.1.3 (parameterization of categorical covariates)

x1f = as.factor(x1)
mod1 = lm(y ~ x1f + x2 + ... + xk, data=ds)

The as.factor() command creates a categorical (or factor/class) variable from
a variable. By default, the lowest value (either numerically or by ASCII char-
acter code) is the reference value when a factor variable is in a formula. The
levels option for the factor() function can be used to select a particular
reference value (see also 2.4.16).

4.1.3 Parameterization of categorical covariates
Example: See 4.7.6

In R, as.factor() can be applied before or within any model-fitting function.
Parameterization of the covariate can be controlled as in the second example
below.

mod1 = lm(y ~ as.factor(x))

or
x.factor = as.factor(x)
mod1 = lm(y ~ x.factor, contrasts=list(x.factor="contr.SAS"))

The as.factor() function creates a factor object. The contrasts option for
the lm() function specifies how the levels of that factor object should be coded.
The levels option to the factor() function allows specification of the ordering
of levels (the default is alphabetical). An example can be found at the beginning
of Section 4.7.

The specification of the design matrix for analysis of variance and regres-
sion models can be controlled using the contrasts option. Examples of op-
tions (for a factor with 4 equally spaced levels) are given in Table 4.1. See
options("contrasts") for defaults, and contrasts() or lm() to apply a con-
trast function to a factor variable. Support for reordering factors is available
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using the reorder() function. Ordered factors can be created using the ordered()
function.

> contr.treatment(4) > contr.poly(4)
2 3 4 .L .Q .C

1 0 0 0 [1,] -0.671 0.5 -0.224
2 1 0 0 [2,] -0.224 -0.5 0.671
3 0 1 0 [3,] 0.224 -0.5 -0.671
4 0 0 1 [4,] 0.671 0.5 0.224
> contr.SAS(4) > contr.sum(4)
1 2 3 [,1] [,2] [,3]

1 1 0 0 1 1 0 0
2 0 1 0 2 0 1 0
3 0 0 1 3 0 0 1
4 0 0 0 4 -1 -1 -1
> contr.helmert(4)
[,1] [,2] [,3]

1 -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3

Table 4.1: Built-In Options for Contrasts

4.1.4 Linear regression with no intercept

mod1 = lm(y ~ 0 + x1 + ... + xk, data=ds)

or

mod1 = lm(y ~ x1 + ... + xk -1, data=ds)

4.1.5 Linear regression with interactions
Example: See 4.7.3

mod1 = lm(y ~ x1 + x2 + x1:x2 + x3 + ... + xk, data=ds)

or

lm(y ~ x1*x2 + x3 + ... + xk, data=ds)

The * operator includes all lower order terms, while the : operator includes
only the specified interaction. So, for example, the commands y ∼ x1*x2*x3
and y ∼ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3 have equal
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values. The syntax also works with any covariates designated as categorical
using the as.factor() command (see 4.1.2).

4.1.6 Linear models stratified by each value of a grouping
variable

Example: See 4.7.5
See also 2.5.1 (subsetting) and 3.1.2 (summary measure by groups)

uniquevals = unique(z)
numunique = length(uniquevals)
formula = as.formula(y ~ x1 + ... + xk)
p = length(coef(lm(formula)))
params = matrix(numeric(numunique*p), p, numunique)
for (i in 1:length(uniquevals)) {

cat(i, "\n")
params[,i] = coef(lm(formula, subset=(z==uniquevals[i])))

}
or
modfits = by(ds, z, function(x) lm(y ~ x1 + ... + xk, data=x))
sapply(modfits, coef)

In the first codeblock, separate regressions are fit for each value of the grouping
variable z through use of a for loop. This requires the creation of a matrix of
results params to be set up in advance, of the appropriate dimension (number
of rows equal to the number of parameters (p=k+1) for the model, and number
of columns equal to the number of levels for the grouping variable z). Within
the loop, the lm() function is called and the coefficients from each fit are saved
in the appropriate column of the params matrix.

The second code block solves the problem using the by() function, where
the lm() function is called for each of the values for z. Additional support for
this type of split-apply-combine strategy is available in library(plyr).

4.1.7 One-way analysis of variance
Example: See 4.7.6

xf = as.factor(x)
mod1 = aov(y ~ xf, data=ds)
summary(mod1)

The summary() command can be used to provide details of the model fit.
More information can be found using help(summary.aov). Note that the func-
tion summary.lm(mod1) will display the regression parameters underlying the
ANOVA model.
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4.1.8 Two-way (or more) analysis of variance
Example: See 4.7.6See also 4.1.5 (interactions) and 6.1.13 (interaction plots)

aov(y ~ as.factor(x1) + as.factor(x2), data=ds)

4.2 Model comparison and selection

4.2.1 Compare two models
Example: See 4.7.6

mod1 = lm(y ~ x1 + ... + xk, data=ds)
mod2 = lm(y ~ x3 + ... + xk, data=ds)
anova(mod2, mod1)

or

drop1(mod2)

Two nested models may be compared using the anova() function. The anova()
command computes analysis of variance (or deviance) tables. When given one
model as an argument, it displays the ANOVA table. When two (or more)
nested models are given, it calculates the differences between them. The func-
tion drop1() computes a table of changes in fit for each term in the named
linear model object.

4.2.2 Log-likelihood
Example: See 4.7.6See also 4.2.3 (AIC)

mod1 = lm(y ~ x1 + ... + xk, data=ds)
logLik(mod1)

The logLik() function supports glm, lm, nls, Arima, gls, lme, and nlme
objects.

4.2.3 Akaike Information Criterion (AIC)
Example: See 4.7.6See also 4.2.2 (log-likelihood)

mod1 = lm(y ~ x1 + ... + xk, data=ds)
AIC(mod1)

The AIC() function includes support for glm, lm, nls, Arima, gls, lme, and
nlme objects. The stepAIC() function within library(MASS) allows stepwise
model selection using AIC (see also 5.4.4, LASSO).
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4.2.4 Bayesian Information Criterion (BIC)

See also 4.2.3 (AIC)

library(nlme)
mod1 = lm(y ~ x1 + ... + xk, data=ds)
BIC(mod1)

4.3 Tests, contrasts, and linear functions of
parameters

4.3.1 Joint null hypotheses: Several parameters equal 0

mod1 = lm(y ~ x1 + ... + xk, data=ds)
mod2 = lm(y ~ x3 + ... + xk, data=ds)
anova(mod2, mod1)

or
sumvals = summary(mod1)
covb = vcov(mod1)
coeff.mod1 = coef(mod1)[2:3]
covmat = matrix(c(covb[2,2], covb[2,3],

covb[2,3], covb[3,3]), nrow=2)
fval = t(coeff.mod1) %*% solve(covmat) %*% coeff.mod1
pval = 1-pf(fval, 2, mod1$df)

The code for the second option, while somewhat complex, builds on the syntax
introduced in 4.5.2, 4.5.9, and 4.5.10, and is intended to demonstrate ways to
interact with linear model objects.

4.3.2 Joint null hypotheses: Sum of parameters

mod1 = lm(y ~ x1 + ... + xk, data=ds)
mod2 = lm(y ~ I(x1+x2-1) + ... + xk, data=ds)
anova(mod2, mod1)

or
mod1 = lm(y ~ x1 + ... + xk, data=ds)
covb = vcov(mod1)
coeff.mod1 = coef(mod1)
t = (coeff.mod1[2,1]+coeff.mod1[3,1]-1)/

sqrt(covb[2,2]+covb[3,3]+2*covb[2,3])
pvalue = 2*(1-pt(abs(t), mod1$df))
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The I() function inhibits the interpretation of operators, to allow them to be
used as arithmetic operators. The code in the lower example utilizes the same
approach introduced in 4.3.1.

4.3.3 Tests of equality of parameters
Example: See 4.7.8

mod1 = lm(y ~ x1 + ... + xk, data=ds)
mod2 = lm(y ~ I(x1+x2) + ... + xk, data=ds)
anova(mod2, mod1)

or
library(gmodels)
fit.contrast(mod1, "x1", values)

or
mod1 = lm(y ~ x1 + ... + xk, data=ds)
covb = vcov(mod1)
coeff.mod1 = coef(mod1)
t = (coeff.mod1[2]-coeff.mod1[3])/

sqrt(covb[2,2]+covb[3,3]-2*covb[2,3])
pvalue = 2*(1-pt(abs(t), mod1$df))

The I() function inhibits the interpretation of operators, to allow them to
be used as arithmetic operators. The fit.contrast() function calculates a
contrast in terms of levels of the factor variable x1 using a numeric matrix
vector of contrast coefficients (where each row sums to zero) denoted by values.
The more general code below utilizes the same approach introduced in 4.3.1
for the specific test of β1 = β2 (different coding would be needed for other
comparisons).

4.3.4 Multiple comparisons
Example: See 4.7.7

mod1 = aov(y ~ x))
TukeyHSD(mod1, "x")

The TukeyHSD() function takes an argument an aov object, and calculates
the pairwise comparisons of all of the combinations of the factor levels of the
variable x (see also library(multcomp)).

4.3.5 Linear combinations of parameters
Example: See 4.7.8

It is often useful to calculate predicted values for particular covariate values.
Here, we calculate the predicted value E[Y |X1 = 1, X2 = 3] = β̂0 + β̂1 + 3β̂2.
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mod1 = lm(y ~ x1 + x2, data=ds)
newdf = data.frame(x1=c(1), x2=c(3))
estimates = predict(mod1, newdf, se.fit=TRUE,

interval="confidence")
or
mod1 = lm(y ~ x1 + x2, data=ds)
library(gmodels)
estimable(mod1, c(1, 1, 3))

The predict() command can generate estimates at any combination of param-
eter values, as specified as a dataframe that is passed as an argument. More
information on this function can be found using help(predict.lm). Similar
functionality is available through the estimable() function.

4.4 Model diagnostics

4.4.1 Predicted values
Example: See 4.7.3

mod1 = lm(...)
predicted.varname = predict(mod1)

The command predict() operates on any lm() object, and by default generates
a vector of predicted values. Similar commands retrieve other regression output.

4.4.2 Residuals
Example: See 4.7.3

mod1 = lm(...)
residual.varname = residuals(mod1)

The command residuals() operates on any lm() object, and generates a
vector of residuals. Other functions for analysis of variance objects, GLM, or
linear mixed effects exist (see for example help(residuals.glm)).

4.4.3 Standardized residuals
Example: See 4.7.3

Standardized residuals are calculated by dividing the ordinary residual (ob-
served minus expected, yi − ŷi) by an estimate of its standard deviation. Stu-
dentized residuals are calculated in a similar manner, where the predicted value
and the variance of the residual are estimated from the model fit while excluding
that observation.



4.4. MODEL DIAGNOSTICS 101

mod1 = lm(...)
standardized.resid.varname = stdres(mod1)
studentized.resid.varname = studres(mod1)

The stdres() and studres() functions operate on any lm() object, and gen-
erate a vector of studentized residuals (the former command includes the obser-
vation in the calculation, while the latter does not). Similar commands retrieve
other regression output (see help(influence.measures)).

4.4.4 Leverage
Example: See 4.7.3

Leverage is defined as the diagonal element of the (X(XTX)−1XT ) or “hat”
matrix.

mod1 = lm(...)
leverage.varname = hatvalues(mod1)

The command hatvalues() operates on any lm() object, and generates a
vector of leverage values. Similar commands can be utilized to retrieve other
regression output (see help(influence.measures)).

4.4.5 Cook’s D
Example: See 4.7.3

Cook’s distance (D) is a function of the leverage (see 4.4.4) and the residual.
It is used as a measure of the influence of a data point in a regression model.

mod1 = lm(...)
cookd.varname = cooks.distance(mod1)

The command cooks.distance() operates on any lm() object, and generates
a vector of Cook’s distance values. Similar commands retrieve other regression
output.

4.4.6 DFFITS
Example: See 4.7.3

DFFITS are a standardized function of the difference between the predicted
value for the observation when it is included in the dataset and when (only) it
is excluded from the dataset. They are used as an indicator of the observation’s
influence.

mod1 = lm(...)
dffits.varname = dffits(mod1)

The command dffits() operates on any lm() object, and generates a vector
of dffits values. Similar commands retrieve other regression output.
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4.4.7 Diagnostic plots
Example: See 4.7.4

mod1 = lm(...)
par(mfrow=c(2, 2)) # display 2 x 2 matrix of graphs
plot(mod1)

The plot.lm() function (which is invoked when plot() is given a linear re-
gression model as an argument) can generate six plots: 1) a plot of residuals
against fitted values, 2) a Scale-Location plot of

√
(Yi − Ŷi) against fitted val-

ues, 3) a normal Q-Q plot of the residuals, 4) a plot of Cook’s distances (4.4.5)
versus row labels, 5) a plot of residuals against leverages (4.4.4), and 6) a plot
of Cook’s distances against leverage/(1-leverage). The default is to plot the
first three and the fifth. The which option can be used to specify a different
set (see help(plot.lm)).

4.4.8 Heteroscedasticity tests

mod1 = lm(y ~ x1 + ... + xk)
library(lmtest)
bptest(y ~ x1 + ... + xk)

The bptest() function in library(lmtest) performs the Breusch-Pagan test
for heteroscedasticity [3].

4.5 Model parameters and results

4.5.1 Parameter estimates
Example: See 4.7.3

mod1 = lm(...)
coeff.mod1 = coef(mod1)

The first element of the vector coeff.mod1 is the intercept (assuming that a
model with an intercept was fit).

4.5.2 Standard errors of parameter estimates

See also 4.5.10 (covariance matrix)

mod1 = lm(...)
se.mod1 = coef(summary(mod1))[,2]

The standard errors are the second column of the results from coef().
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4.5.3 Confidence limits for parameter estimates
Example: See 4.7.3

mod1 = lm(...)
confint(mod1)

4.5.4 Confidence limits for the mean
Example: See 4.7.2

The lower (and upper) confidence limits for the mean of observations with the
given covariate values can be generated, as opposed to the prediction limits for
new observations with those values (see 4.5.5).

mod1 = lm(...)
pred = predict(mod1, interval="confidence")
lcl.varname = pred[,2]

The lower confidence limits are the second column of the results from predict().
To generate the upper confidence limits, the user would access the third col-
umn of the predict() object. The command predict() operates on any lm()
object, and with these options generates confidence limit values. By default,
the function uses the estimation dataset, but a separate dataset of values to be
used to predict can be specified.

4.5.5 Prediction limits

The lower (and upper) prediction limits for“new”observations can be generated
with the covariate values of subjects observed in the dataset (as opposed to
confidence limits for the population mean as described in Section 4.5.4).

mod1 = lm(...)
pred.w.lowlim = predict(mod1, interval="prediction")[,2]

This code saves the second column of the results from the predict() function
into a vector. To generate the upper confidence limits, the user would access
the third column of the predict() object. The command predict() operates
on any lm() object, and with these options generates prediction limit values.
By default, the function uses the estimation dataset, but a separate dataset of
values to be used to predict can be specified.

4.5.6 Plot confidence limits for a particular covariate
vector

Example: See 4.7.2
pred.w.clim = predict(lm(y ~ x), interval="confidence")
matplot(x, pred.w.clim, lty=c(1, 2, 2), type="l",

ylab="predicted y")
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This entry produces fit and confidence limits at the original observations in the
original order. If the observations are not sorted relative to the explanatory
variable x, the resulting plot will be a jumble. The matplot() function is used
to generate lines, with a solid line (lty=1) for predicted values and dashed line
(lty=2) for the confidence bounds.

4.5.7 Plot prediction limits for a new observation
Example: See 4.7.2

pred.w.plim = predict(lm(y ~ x), interval="prediction")
matplot(x, pred.w.plim, lty=c(1, 2, 2), type="l",

ylab="predicted y")

This entry produces fit and confidence limits at the original observations in the
original order. If the observations are not sorted relative to the explanatory
variable x, the resulting plot will be a jumble. The matplot() function is used
to generate lines, with a solid line (lty=1) for predicted values and dashed line
(lty=2) for the confidence bounds.

4.5.8 Plot predicted lines for several values of a predictor

Here we describe how to generate plots for a variable X1 versus Y separately
for each value of the variable X2 (see also 3.1.2, stratifying by a variable and
6.1.6, conditioning plot).

plot(x1, y, pch=" ") # create an empty plot of the correct size
abline(lm(y ~ x1, subset=x2==0), lty=1, lwd=2)
abline(lm(y ~ x1, subset=x2==1), lty=2, lwd=2)
...
abline(lm(y ~ x1, subset=x2==k), lty=k+1, lwd=2)

The abline() function is used to generate lines for each of the subsets, with a
solid line (lty=1) for the first group and dashed line (lty=2) for the second (this
assumes that X2 takes on values 0–k, see 4.1.6). More sophisticated approaches
to this problem can be tackled using sapply(), mapply(), split(), and related
functions.

4.5.9 Design and information matrix

See also 2.9 (matrices) and 4.1.3 (parametrization of design matrices).

mod1 = lm(y ~ x1 + ... + xk, data=ds)
XpX = t(model.matrix(mod1)) %*% model.matrix(mod1)

or
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X = cbind(rep(1, length(x1)), x1, x2, ..., xk)
XpX = t(X) %*% X
rm(X)

The model.matrix() function creates the design matrix from a linear model
object. Alternatively, this quantity can be built up using the cbind() function
to glue together the design matrix X. Finally, matrix multiplication and the
transpose function are used to create the information (X ′X) matrix.

4.5.10 Covariance matrix of the predictors
Example: See 4.7.3See also 2.9 (matrices) and 4.5.2 (standard errors)

mod1 = lm(...)
varcov = vcov(mod1)
or
sumvals = summary(mod1)
covb = sumvals$cov.unscaled*sumvals$sigma^2

Running help(summary.lm) provides details on return values.

4.6 Further resources

Faraway [14] provides an accessible guide to linear regression in R, while Cook
[7] details a variety of regression diagnostics. The CRAN Task View on Statis-
tics for the Social Sciences provides an excellent overview of methods described
here and in Chapter 5.

4.7 HELP examples

To help illustrate the tools presented in this chapter, we apply many of the
entries to the HELP data. The code for these examples can be downloaded
from http://www.math.smith.edu/r/examples.

We begin by reading in the dataset and keeping only the female subjects.
We create a version of the substance variable as a factor (see 4.1.3).

> options(digits=3)

> options(width=67) # narrow output

> library(foreign)

> ds = read.csv("http://www.math.smith.edu/r/data/help.csv")

> newds = ds[ds$female==1,]

> attach(newds)

> sub = factor(substance, levels=c("heroin", "alcohol",

+ "cocaine"))

http://www.math.smith.edu/r/examples
http://www.math.smith.edu/r/data/help.csv
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4.7.1 Scatterplot with smooth fit

As a first step to help guide fitting a linear regression, we create a scatterplot
(6.1.1) displaying the relationship between age and the number of alcoholic
drinks consumed in the period before entering detox (variable name: i1), as
well as primary substance of abuse (alcohol, cocaine, or heroin).

Figure 4.1 displays a scatterplot of observed values for i1 (along with sep-
arate smooth fits by primary substance). To improve legibility, the plotting
region is restricted to those with number of drinks between 0 and 40 (see plot-
ting limits, 6.3.7).

> plot(age, i1, ylim=c(0,40), type="n", cex.lab=1.4,

+ cex.axis=1.4)

> points(age[substance=="alcohol"], i1[substance=="alcohol"],

+ pch="a")

> lines(lowess(age[substance=="alcohol"],

+ i1[substance=="alcohol"]), lty=1, lwd=2)

> points(age[substance=="cocaine"], i1[substance=="cocaine"],

+ pch="c")

> lines(lowess(age[substance=="cocaine"],

+ i1[substance=="cocaine"]), lty=2, lwd=2)

> points(age[substance=="heroin"], i1[substance=="heroin"],

+ pch="h")

> lines(lowess(age[substance=="heroin"],

+ i1[substance=="heroin"]), lty=3, lwd=2)

> legend(44, 38, legend=c("alcohol", "cocaine", "heroin"),

+ lty=1:3, cex=1.4, lwd=2, pch=c("a", "c", "h"))

The pch option to the legend() command can be used to insert plot symbols
in legends (Figure 4.1 displays the different line styles).

Not surprisingly, Figure 4.1 suggests that there is a dramatic effect of pri-
mary substance, with alcohol users drinking more than others. There is some
indication of an interaction with age.

4.7.2 Regression with prediction intervals

We demonstrate plotting confidence limits (4.5.4) as well as prediction limits
(4.5.7) from a linear regression model of pcs as a function of age.

We first sort the data, as needed by matplot(). Figure 4.2 displays the
predicted line along with these intervals.
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Figure 4.1: Scatterplot of observed values for AGE and I1 (plus smoothers by
substance).

> ord = order(age)

> orderage = age[ord]

> orderpcs = pcs[ord]

> lm1 = lm(orderpcs ~ orderage)

> pred.w.clim = predict(lm1, interval="confidence")

> pred.w.plim = predict(lm1, interval="prediction")

> matplot(orderage, pred.w.plim, lty=c(1, 2, 2), type="l",

+ ylab="predicted PCS", xlab="age (in years)", lwd=2)

> matpoints(orderage, pred.w.clim, lty=c(1, 3, 3), type="l",

+ lwd=2)

> legend(40, 56, legend=c("prediction", "confidence"), lty=2:3,

+ lwd=2)
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Figure 4.2: Predicted values for PCS as a function of age (plus confidence and
prediction intervals).

4.7.3 Linear regression with interaction

Next we fit a linear regression model (4.1.1) for the number of drinks as a
function of age, substance, and their interaction (4.1.5). To assess the need
for the interaction, we fit the model with no interaction and use the anova()
function to compare the models (the drop1() function could also be used).
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> options(show.signif.stars=FALSE)

> lm1 = lm(i1 ~ sub * age)

> lm2 = lm(i1 ~ sub + age)

> anova(lm2, lm1)

Analysis of Variance Table

Model 1: i1 ~ sub + age
Model 2: i1 ~ sub * age
Res.Df RSS Df Sum of Sq F Pr(>F)

1 103 26196
2 101 24815 2 1381 2.81 0.065

There is some indication of a borderline significant interaction between age and
substance group (p=0.065).

There are many quantities of interest stored in the linear model object lm1,
and these can be viewed or extracted for further use.
> names(summary(lm1))

[1] "call" "terms" "residuals"
[4] "coefficients" "aliased" "sigma"
[7] "df" "r.squared" "adj.r.squared"
[10] "fstatistic" "cov.unscaled"

> summary(lm1)$sigma

[1] 15.7

> names(lm1)

[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "contrasts"
[10] "xlevels" "call" "terms"
[13] "model"
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> lm1$coefficients

(Intercept) subalcohol subcocaine age
-7.770 64.880 13.027 0.393

subalcohol:age subcocaine:age
-1.113 -0.278

> coef(lm1)

(Intercept) subalcohol subcocaine age
-7.770 64.880 13.027 0.393

subalcohol:age subcocaine:age
-1.113 -0.278

> confint(lm1)

2.5 % 97.5 %
(Intercept) -33.319 17.778
subalcohol 28.207 101.554
subcocaine -24.938 50.993
age -0.325 1.112
subalcohol:age -2.088 -0.138
subcocaine:age -1.348 0.793

> vcov(lm1)

(Intercept) subalcohol subcocaine age
(Intercept) 165.86 -165.86 -165.86 -4.548
subalcohol -165.86 341.78 165.86 4.548
subcocaine -165.86 165.86 366.28 4.548
age -4.55 4.55 4.55 0.131
subalcohol:age 4.55 -8.87 -4.55 -0.131
subcocaine:age 4.55 -4.55 -10.13 -0.131

subalcohol:age subcocaine:age
(Intercept) 4.548 4.548
subalcohol -8.866 -4.548
subcocaine -4.548 -10.127
age -0.131 -0.131
subalcohol:age 0.241 0.131
subcocaine:age 0.131 0.291
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4.7.4 Regression diagnostics

Assessing the model is an important part of any analysis. We begin by examin-
ing the residuals (4.4.2). First, we calculate the quantiles of their distribution,
then display the smallest residual.

> pred = fitted(lm1)

> resid = residuals(lm1)

> quantile(resid)

0% 25% 50% 75% 100%
-31.92 -8.25 -4.18 3.58 49.88

We could examine the output, then select a subset of the dataset to find the
value of the residual that is less than −31. Instead the dataset can be sorted
so the smallest observation is first and then print the minimum observation.

> tmpds = data.frame(id, age, i1, sub, pred, resid,

+ rstandard(lm1))

> tmpds[resid==max(resid),]

id age i1 sub pred resid rstandard.lm1.
4 9 50 71 alcohol 21.1 49.9 3.32

> tmpds[resid==min(resid),]

id age i1 sub pred resid rstandard.lm1.
72 325 35 0 alcohol 31.9 -31.9 -2.07

The output includes the row number of the minimum and maximum residual.
Graphical tools are the best way to examine residuals. Figure 4.3 displays

the default diagnostic plots (4.4) from the model.

> oldpar = par(mfrow=c(2, 2), mar=c(4, 4, 2, 2)+.1)

> plot(lm1)

> par(oldpar)

Figure 4.4 displays the empirical density of the standardized residuals, along
with an overlaid normal density. The assumption that the residuals are ap-
proximately Gaussian does not appear to be tenable.

> library(MASS)

> std.res = rstandard(lm1)

> hist(std.res, breaks=seq(-2.5, 3.5, by=.5), main="",

+ xlab="standardized residuals", col="gray80", freq=FALSE)

> lines(density(std.res), lwd=2)

> xvals = seq(from=min(std.res), to=max(std.res), length=100)

> lines(xvals, dnorm(xvals, mean(std.res), sd(std.res)), lty=2,

+ lwd=3)
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Figure 4.3: Default diagnostics.

The residual plots indicate some potentially important departures from model
assumptions, and further exploration should be undertaken.

4.7.5 Fitting regression model separately for each value
of another variable

One common task is to perform identical analyses in several groups. Here, as
an example, we consider separate linear regressions for each substance abuse
group.

A matrix of the correct size is created, then a for loop is run for each unique
value of the grouping variable.
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Figure 4.4: Empirical density of residuals, with superimposed normal density.

> uniquevals = unique(substance)

> numunique = length(uniquevals)

> formula = as.formula(i1 ~ age)

> p = length(coef(lm(formula)))

> res = matrix(rep(0, numunique*p), p, numunique)

> for (i in 1:length(uniquevals)) {

+ res[,i] = coef(lm(formula, subset=substance==uniquevals[i]))

+ }

> rownames(res) = c("intercept","slope")

> colnames(res) = uniquevals

> res

heroin cocaine alcohol
intercept -7.770 5.257 57.11
slope 0.393 0.116 -0.72

> detach(newds)
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4.7.6 Two-way ANOVA

Is there a statistically significant association between gender and substance
abuse group with depressive symptoms? The function interaction.plot()
can be used to graphically assess this question. Figure 4.5 displays an interac-
tion plot for CESD as a function of substance group and gender.

> attach(ds)

> sub = as.factor(substance)

> gender = as.factor(ifelse(female, "F", "M"))

> interaction.plot(sub, gender, cesd, xlab="substance", las=1,

+ lwd=2)
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Figure 4.5: Interaction plot of CESD as a function of substance group and
gender.

There are indications of large effects of gender and substance group, but little
suggestion of interaction between the two. The same conclusion is reached in
Figure 4.6, which displays boxplots by substance group and gender.
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> subs = character(length(substance))

> subs[substance=="alcohol"] = "Alc"

> subs[substance=="cocaine"] = "Coc"

> subs[substance=="heroin"] = "Her"

> gen = character(length(female))

> boxout = boxplot(cesd ~ subs + gender, notch=TRUE,

+ varwidth=TRUE, col="gray80")

> boxmeans = tapply(cesd, list(subs, gender), mean)

> points(seq(boxout$n), boxmeans, pch=4, cex=2)
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Figure 4.6: Boxplot of CESD as a function of substance group and gender.

The width of each box is proportional to the size of the sample, with the notches
denoting confidence intervals for the medians, and X’s marking the observed
means.

Next, we proceed to formally test whether there is a significant interaction
through a two-way analysis of variance (4.1.8). We fit models with and without
an interaction, and then compare the results. We also construct the likelihood
ratio test manually.



116 CHAPTER 4. LINEAR REGRESSION AND ANOVA

> aov1 = aov(cesd ~ sub * gender, data=ds)

> aov2 = aov(cesd ~ sub + gender, data=ds)

> resid = residuals(aov2)

> anova(aov2, aov1)

Analysis of Variance Table

Model 1: cesd ~ sub + gender
Model 2: cesd ~ sub * gender
Res.Df RSS Df Sum of Sq F Pr(>F)

1 449 65515
2 447 65369 2 146 0.5 0.61

> options(digits=6)

> logLik(aov1)

'log Lik.' -1768.92 (df=7)

> logLik(aov2)

'log Lik.' -1769.42 (df=5)

> lldiff = logLik(aov1)[1] - logLik(aov2)[1]

> lldiff

[1] 0.505055

> 1 - pchisq(2*lldiff, 2)

[1] 0.603472

> options(digits=3)

There is little evidence (p=0.61) of an interaction, so this term can be dropped.
The model was previously fit to test the interaction, and can be displayed.
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> aov2

Call:
aov(formula = cesd ~ sub + gender, data = ds)

Terms:
sub gender Residuals

Sum of Squares 2704 2569 65515
Deg. of Freedom 2 1 449

Residual standard error: 12.1
Estimated effects may be unbalanced

> summary(aov2)

Df Sum Sq Mean Sq F value Pr(>F)
sub 2 2704 1352 9.27 0.00011
gender 1 2569 2569 17.61 3.3e-05
Residuals 449 65515 146

The default design matrix (lowest value is reference group, see 4.1.3) can be
changed and the model refit. In this example, we specify the coding where the
highest value is denoted as the reference group (which could allow matching
results from a similar model fit in SAS).

> contrasts(sub) = contr.SAS(3)

> aov3 = lm(cesd ~ sub + gender, data=ds)

> summary(aov3)

Call:
lm(formula = cesd ~ sub + gender, data = ds)

Residuals:
Min 1Q Median 3Q Max

-32.13 -8.85 1.09 8.48 27.09

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.131 1.486 26.34 < 2e-16
sub1 -0.281 1.416 -0.20 0.84247
sub2 -5.606 1.462 -3.83 0.00014
genderM -5.619 1.339 -4.20 3.3e-05

Residual standard error: 12.1 on 449 degrees of freedom
Multiple R-squared: 0.0745, Adjusted R-squared: 0.0683
F-statistic: 12 on 3 and 449 DF, p-value: 1.35e-07
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The AIC criteria (4.2.3) can also be used to compare models: this also suggests
that the model without the interaction is most appropriate.

> AIC(aov1)

[1] 3552

> AIC(aov2)

[1] 3549

4.7.7 Multiple comparisons

We can also carry out multiple comparison (4.3.4) procedures to test each of the
pairwise differences between substance abuse groups. We use the TukeyHSD()
function here.
> mult = TukeyHSD(aov(cesd ~ sub, data=ds), "sub")

> mult

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = cesd ~ sub, data = ds)

$sub
diff lwr upr p adj

cocaine-alcohol -4.952 -8.15 -1.75 0.001
heroin-alcohol 0.498 -2.89 3.89 0.936
heroin-cocaine 5.450 1.95 8.95 0.001

The alcohol group and heroin group both have significantly higher CESD scores
than the cocaine group, but the alcohol and heroin groups do not significantly
differ from each other (95% CI ranges from −2.8 to 3.8). Figure 4.7 provides a
graphical display of the pairwise comparisons.

> plot(mult)

4.7.8 Contrasts

We can also fit contrasts (4.3.3) to test hypotheses involving multiple parame-
ters. In this case, we can compare the CESD scores for the alcohol and heroin
groups to the cocaine group.
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Figure 4.7: Pairwise comparisons.

> library(gmodels)

> fit.contrast(aov2, "sub", c(1,-2,1), conf.int=0.95 )

Estimate Std. Error t value Pr(>|t|) lower CI
sub c=( 1 -2 1 ) 10.9 2.42 4.52 8.04e-06 6.17

upper CI
sub c=( 1 -2 1 ) 15.7

As expected from the interaction plot (Figure 4.5), there is a statistically sig-
nificant difference in this one degree of freedom comparison (p<0.0001).





Chapter 5

Regression generalizations
and multivariate statistics

This chapter discusses many commonly used statistical models beyond linear
regression and ANOVA, as well as multivariate statistics. The CRAN Task
Views on statistics for the social sciences, psychometric models, and multivari-
ate statistics provide useful overviews.

5.1 Generalized linear models

Table 5.1 displays the options to specify link functions and family of distri-
butions for generalized linear models [43]. Description of several specific gen-
eralized linear regression models (e.g., logistic and Poisson) can be found in
subsequent sections of this chapter.

glm(y ~ x1 + ... + xk, family="familyname"(link="linkname"),
data=ds)

More information on GLM families and links can be found using help(family).

5.1.1 Logistic regression model
Example: See 5.7.1 and 7.7

glm(y ~ x1 + ... + xk, binomial, data=ds)

or
library(rms)
lrm(y ~ x1 + ... + xk, data=ds)

121
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Distribution Options for command glm()

Gaussian family="gaussian", link="identity", "log" or
"inverse"

binomial family="binomial", link="logit", "probit",
"cauchit", "log" or "cloglog"

gamma family="Gamma", link="inverse", "identity" or
"log"

Poisson family="poisson", link="log", "identity" or
"sqrt"

inverse Gaussian family="inverse.gaussian", link="1/muˆ2",
"inverse", "identity" or "sqrt"

Multinomial See multinom() in nnet library
Negative Binomial See negative.binomial() in MASS library

overdispersed family="quasi", link="logit", "probit",
"cloglog", "identity", "inverse", "log",
"1/muˆ2" or "sqrt" (see also glm.binomial.disp()
in the dispmod library)

Table 5.1: Generalized Linear Model Distributions

The lrm() function within the rms package provides the so-called “c” statistic
(area under ROC curve, see also 6.1.17) and the Nagelkerke pseudo-R2 index
[47].

5.1.2 Exact logistic regression

library(elrm)
elrmres = elrm(y ~ x1 + ... + xk, iter=10000, burnIn=10000,

data=ds)

The elrm() function implements a modified MCMC algorithm to approximate
exact conditional inference for logistic regression models [80] (see also 5.4.7,
Bayesian methods).

5.1.3 Poisson model
Example: See 5.7.2See also 5.1.5 (zero-inflated Poisson)

glm(y ~ x1 + ... + xk, poisson, data=ds)
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5.1.4 Goodness of fit for count models

It is always important to check assumptions for models. This is particularly
true for Poisson models, which are quite sensitive to model departures [26]. One
way to assess the fit of the model is by comparing the observed and expected
cell counts, and then calculating Pearson’s chi-square statistic. This can be
carried out using the goodfit() function.

library(vcd)
poisfit = goodfit(x, "poisson")

The goodfit() function carries out a Pearson’s χ2 test of observed vs. expected
counts. Other distributions supported include binomial and nbinomial. A
hanging rootogram [74] can also be generated to assess the goodness of fit
for count models. If the model fits well, then the bottom of each bar in the
rootogram should be near zero.

library(vcd)
rootogram(poisfit)

5.1.5 Zero-inflated Poisson model
Example: See 5.7.3

Zero-inflated Poisson models can be used for count outcomes that generally
follow a Poisson distribution but for which there are (many) more observed
counts of 0 than would be expected. These data can be seen as deriving from
a mixture distribution of a Poisson and a degenerate distribution with point
mass at zero (see also 5.1.7, zero-inflated negative binomial).

library(pscl)
mod = zeroinfl(y ~ x1 + ... + xk | x2 + ... + xp, data=ds)

The Poisson rate parameter of the model is specified in the usual way with
a formula as argument to zeroinfl(). The default link is log. The excess
zero-probability is modeled as a function of the covariates specified after the
“|” character. An intercept-only model can be fit by including 1 as the second
model. Zero-inflated negative binomial and geometric models are also sup-
ported.

5.1.6 Negative binomial model
Example: See 5.7.4See also 5.1.7 (zero-inflated negative binomial)

library(MASS)
glm.nb(y ~ x1 + ... + xk, data=ds)
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5.1.7 Zero-inflated negative binomial model

Zero-inflated negative binomial models can be used for count outcomes that
generally follow a negative binomial distribution but for which there are (many)
more observed counts of 0 than would be expected. These data can be seen as
deriving from a mixture distribution of a negative binomial and a degenerate
distribution with point mass at zero (see also 5.1.5, zero-inflated Poisson).

library(pscl)
mod = zeroinfl(y ~ x1 + ... + xk | x2 + ... + xp, dist="negbin",

data=ds)

The negative binomial rate parameter of the model is specified in the usual
way with a formula as argument to zeroinfl(). The default link is log. The
zero-probability is modeled as a function of the covariates specified after the
“|” character. An intercept-only model can be fit by including 1 as the model.

5.1.8 Log-linear model

Loglinear models are a flexible approach to analysis of categorical data [1]. A
loglinear model of a three-dimensional contingency table denoted by X1, X2,
and X3 might assert that the expected counts depend on a two-way interaction
between the first two variables, but that X3 is independent of all the others:

log(mijk) = µ+ λX1
i + λX2

j + λX1,X2
ij + λX3

k

logres = loglin(table(x1, x2, x3), margin=list(c(1,2), c(3)),
param=TRUE)

pvalue = 1-pchisq(logres$lrt, logres$df)

The margin option specifies the dependence assumptions. In addition to the
loglin() function, the loglm() function within the MASS library provides an
interface for log-linear modeling.

5.1.9 Ordered multinomial model
Example: See 5.7.7

library(MASS)
polr(y ~ x1 + ... + xk, data=ds)

The default link is logistic; this can be changed to probit, complementary log-
log or Cauchy using the method option.
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5.1.10 Generalized (nominal outcome) multinomial logit
Example: See 5.7.8

library(VGAM)
mlogit = vglm(y ~ x1 + ... + xk, family=multinomial(), data=ds)

5.1.11 Conditional logistic regression model

library(survival)
cmod = clogit(y ~ x1 + ... + xk + strata(id), data=ds)

The variable id identifies strata or matched sets of observations. An exact
model is fit by default.

5.2 Models for correlated data

There is extensive support within for correlated data regression models, includ-
ing repeated measures, longitudinal, time series, clustered, and other related
methods. Throughout this section we assume that repeated measurements are
taken on a subject or cluster denoted by variable id.

5.2.1 Linear models with correlated outcomes
Example: See 5.7.11

library(nlme)
glsres = gls(y ~ x1 + ... + xk,

correlation=corSymm(form = ~ ordervar | id),
weights=varIdent(form = ~1 | ordervar), ds)

The gls() function supports estimation of generalized least squares regression
models with arbitrary specification of the variance covariance matrix. In addi-
tion to a formula interface for the mean model, the analyst specifies a within-
group correlation structure as well as a description of the within-group het-
eroscedasticity structure (using the weights option). The statement ordervar
| id implies that associations are assumed within id. Other covariance matrix
options are available, see help(corClasses).

5.2.2 Linear mixed models with random intercepts

See also 5.2.3 (random slope models), 5.2.4 (random coefficient models), and
7.1.2 (empirical power calculations)

library(nlme)
lmeint = lme(fixed= y ~ x1 + ... + xk, random = ~ 1 | id,

na.action=na.omit, data=ds)
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Best linear unbiased predictors (BLUPs) of the sum of the fixed effects plus cor-
responding random effects can be generated using the coef() function, random
effect estimates using the random.effects() function, and the estimated vari-
ance covariance matrix of the random effects using VarCorr(). The fixed effects
can be returned using the fixed.effects() command. Normalized residuals
(using a Cholesky decomposition, see Fitzmaurice, Laird, and Ware [17]) can
be generated using the type="normalized" option when calling residuals()
(more information can be found using help(residuals.lme)). A plot of the
random effects can be created using plot(lmeint).

5.2.3 Linear mixed models with random slopes
Example: See 5.7.12

See also 5.2.2 (random intercept models) and 5.2.4 (random coefficient models)

library(nlme)
lmeslope = lme(fixed=y ~ time + x1 + ... + xk,

random = ~ time | id, na.action=na.omit, data=ds)

The default covariance for the random effects is unstructured (other options are
described in help(reStruct)). Best linear unbiased predictors (BLUPs) of the
sum of the fixed effects plus corresponding random effects can be generated us-
ing the coef() function, random effect estimates using the random.effects()
function, and the estimated variance covariance matrix of the random effects us-
ing VarCorr(). A plot of the random effects can be created using plot(lmeint).

5.2.4 More complex random coefficient models

We can extend the random effects models introduced in 5.2.2 and 5.2.3 to 3
or more subject-specific random parameters (e.g., a quadratic growth curve or
spline/“broken stick” model [17]). We use time1 and time2 to refer to 2 generic
functions of time.

library(nlme)
lmestick = lme(fixed= y ~ time1 + time2 + x1 + ... + xk,

random = ~ time1 time2 | id, data=ds, na.action=na.omit)

The default covariance for the random effects is unstructured (other options are
described in help(reStruct)). Best linear unbiased predictors (BLUPs) of the
sum of the fixed effects plus corresponding random effects can be generated us-
ing the coef() function, random effect estimates using the random.effects()
function, and the estimated variance covariance matrix of the random effects us-
ing VarCorr(). A plot of the random effects can be created using plot(lmeint).



5.2. MODELS FOR CORRELATED DATA 127

5.2.5 Multilevel models

Studies with multiple levels of clustering can be fit. In a typical example,
a study might include schools (as one level of clustering) and classes within
schools (a second level of clustering), with individual students within the class-
rooms providing a response. Generically, we refer to levell variables which are
identifiers of cluster membership at level l. Random effects at different levels
are assumed to be uncorrelated with each other.

library(nlme)
lmres = lme(fixed= y ~ x1 + ... + xk,

random= ~ 1 | level1 / level2, data=ds)

A model with k levels of clustering can be fit using the syntax: level1 / ...
/ levelk.

5.2.6 Generalized linear mixed models
Example: See 5.7.14 and 7.1.2

library(lme4)
glmmres = lmer(y ~ x1 + ... + xk + (1|id), family=familyval,

data=ds)

See help(family) for details regarding specification of distribution families
and link functions.

5.2.7 Generalized estimating equations
Example: See 5.7.13

library(gee)
geeres = gee(formula = y ~ x1 + ... + xk, id=id, data=ds,

family=binomial, corstr="independence")

The gee() function requires that the dataframe be sorted by subject identifier
(see 2.5.6). Other correlation structures include "AR-M", "fixed", "stat_M_dep",
"non_stat_M_dep", and "unstructured". Note that the "unstructured"
working correlation will only yield correct answers when missing data are mono-
tone, since no ordering options are available in the present release (see help(gee)
for more information).

5.2.8 Time-series model

Time-series modeling is an extensive area with a specialized language and nota-
tion. We make only the briefest approach here. We display fitting an ARIMA
(autoregressive integrated moving average) model for the first difference, with
first-order auto-regression and moving averages. The CRAN Task View on
Time Series provides an overview of relevant routines.
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tsobj = ts(x, frequency=12, start=c(1992, 2))
arres = arima(tsobj, order=c(1, 1, 1))

The ts() function creates a time series object, in this case for monthly time-
series data within the variable x beginning in February 1992 (the default be-
havior is that the series starts at time 1 and number of observations per unit
of time is 1). The start option is either a single number or a vector of two
integers which specify a natural time unit and a number of samples into the
time unit. The arima() function fits an ARIMA model with AR, differencing
and MA order all equal to 1.

5.3 Survival analysis

Survival (or failure time) data consist of the time until an event is observed,
as well as an indicator of whether the event was observed or censored at that
time. Throughout, we denote the time of measurement with the variable time
and censoring with a dichotomous variable cens = 1 if censored, or = 0 if
observed. More information on survival (or failure time, or time-to-event)
analysis can be found in the CRAN Survival Analysis Task View (see 1.7.2).
Other entries related to survival analysis include 3.4.4 (logrank test) and 6.1.18
(Kaplan–Meier plot).

5.3.1 Proportional hazards (Cox) regression model
Example: See 5.7.15 and 7.2.4

library(survival)
coxph(Surv(time, cens) ~ x1 + ... + xk)

The Efron estimator is the default; other choices including exact and Breslow
can be specified using the method option. The cph() function within the rms
package supports time varying covariates, while the cox.zph() function within
the survival package allows testing of the proportionality assumption. See
survfit() for estimates of the the baseline cumulative hazard and other related
quantities.

5.3.2 Proportional hazards (Cox) model with frailty

library(survival)
coxph(Surv(time, cens) ~ x1 + ... + xk + frailty(id), data=ds)

More information on specification of frailty models can be found using the
command help(frailty); support is available for t, Gamma and Gaussian
distributions. Additional functionality to fit frailty models using maximum
penalized likelihood estimation is available in library(frailtypack).
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5.4 Further generalizations to regression
models

5.4.1 Nonlinear least squares model

Nonlinear least squares models [64] can be flexibly fit. As an example, consider
the income inequality model described by Sarabia and colleagues [60]:

Y = (1− (1−X)p)(1/p)

nls(y ~ (1- (1-x)^{p})^(1/{p}), start=list(p=0.5), trace=TRUE)

We provide a starting value (0.5) within the interior of the parameter space.
Finding solutions for nonlinear least squares problems is often challenging, see
help(nls) for information on supported algorithms as well as Section 2.8.8
(optimization).

5.4.2 Generalized additive model
Example: See 5.7.9

library(gam)
gam(y ~ s(x1, df) + lo(x2) + lo(x3, x4) + x5 + ... + xk, data=ds)

Specification of a smooth term for variable x1 is given by s(x1), while a uni-
variate or bivariate loess fit can be included using lo(x1, x2). See gam.s()
and gam.lo() within library(gam) for details regarding specification of de-
grees of freedom or span, respectively. Polynomial regression terms can be fit
using the poly() function. Support for additive mixed models is provided by
library(amer).

5.4.3 Robust regression model

Robust regression refers to methods for detecting outliers and/or providing
stable estimates when they are present. Outlying variables in the outcome,
predictor, or both are considered.

library(MASS)
rlm(y ~ x1 + ... + xk, data=ds)

The rlm() function fits a robust linear model using M estimation. More in-
formation can be found in the CRAN Robust Statistical Methods Task View.
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5.4.4 LASSO model selection
Example: See 5.7.5

The LASSO (least absolute shrinkage and selection operator) is a model se-
lection method for linear regression that minimizes the sum of squared errors
subject to a constraint on the sum of the absolute value of the coefficients [69].
This is particularly useful in data mining situations where a large number of
predictors are being considered for inclusion in the model.

library(lars)
lars(y ~ x1 + ... + xk, data=ds, type="lasso")

The lars() function also implements least angle regression and forward stage-
wise methods.

5.4.5 Quantile regression model
Example: See 5.7.6

Quantile regression predicts changes in the specified quantile of the outcome
variable per unit change in the predictor variables; analogous to the change
in the mean predicted in least squares regression. If the quantile so predicted
is the median, this is equivalent to minimum absolute deviation regression (as
compared to least squares regression minimizing the squared deviations).

library(quantreg)
quantmod = rq(y ~ x1 + ... + xk, tau=0.75, data=ds)

The default for tau is 0.5, corresponding to median regression. If a vector is
specified, the return value includes a matrix of results.

5.4.6 Ridge regression model

Ridge regression is an extension of multiple regression when predictors are
nearly collinear.

library(MASS)
ridgemod = lm.ridge(y ~ x1 + ... + xk,

lambda=seq(from=a, to=b, by=c), data=ds)

Postestimation functions supporting lm.ridge() objects include plot() and
select(). A vector of ridge constants can be specified using the lambda option.
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5.4.7 Bayesian methods
Example: See 5.7.16

Bayesian methods are increasingly commonly utilized, and implementations of
many models are available. The CRAN Bayesian Inference Task View pro-
vides an overview of the packages that incorporate some aspect of Bayesian
methodologies.

library(MCMCpack)

# linear regression
mod1 = MCMCregress(formula, burnin=1000, mcmc=10000, data=ds)

# logistic regression
mod2 = MCMClogit(formula, burnin=1000, mcmc=10000, data=ds)

# Poisson regression
mod3 = MCMCpoisson(formula, burnin=1000, mcmc=10000, data=ds)

Table 5.2 displays modeling functions available within the MCMCpack library
(including the three listed above). The default prior means are set to zero with
precision given by an improper uniform prior.

Specification of prior distributions is important for Bayesian analysis. In
addition, diagnosis of convergence is a critical part of any MCMC model fitting
(see Gelman et al. [21] for an accessible introduction). Support for model as-
sessment is provided in the coda (Convergence Diagnosis and Output Analysis)
package, which can operate on mcmc objects returned by the MCMC routines.

5.4.8 Complex survey design

The appropriate analysis of sample surveys requires incorporation of complex
design features, including stratification, clustering, weights, and finite pop-
ulation correction. These design components can be incorporated for many
common models. In this example, we assume that there are variables psuvar
(cluster or PSU), stratum (stratification variable), and wt (sampling weight).
Code examples are given to estimate the mean of a variable x1 as well as a
linear regression model.

library(survey)
mydesign = svydesign(id=~psuvar, strata=~stratum, weights=~wt,

fpc=~fpcvar, data=ds)
meanres = svymean(~ x1, mydesign)
regres = svyglm(y ~ x1 + ... + xk, design=mydesign)

The survey library includes support for many models. Illustrated above are
means and linear regression models, with specification of PSU’s, stratification,
weight, and FPC [8].
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MCMCSVDreg() MCMC for SVD Regression
MCMCbinaryChange() MCMC for a Binary Multiple Changepoint

Model
MCMCdynamicEI() MCMC for Quinn’s Dynamic Ecological Infer-

ence Model
MCMCdynamicIRT1d() MCMC for Dynamic One-Dimensional Item

Response Theory Model
MCMCfactanal() MCMC for Normal Theory Factor Analysis

Model
MCMChierEI() MCMC for Wakefield’s Hierarchical Ecological

Inference Model
MCMCirt1d() MCMC for One-Dimensional Item Response

Theory Model
MCMCirtHier1d() MCMC for Hierarchical One-Dimensional Item

Response Theory Model, Covariates Predicting
Latent Ideal Point (Ability)

MCMCirtKd() MCMC for K-Dimensional Item Response The-
ory Model

MCMCirtKdHet() MCMC for Heteroskedastic K-Dimensional
Item Response Theory Model

MCMCirtKdRob() MCMC for Robust K-Dimensional Item Re-
sponse Theory Model

MCMClogit() MCMC for Logistic Regression
MCMCmetrop1R() Metropolis Sampling from User-Written R

function
MCMCmixfactanal() MCMC for Mixed Data Factor Analysis Model
MCMCmnl() MCMC for Multinomial Logistic Regression
MCMCoprobit() MCMC for Ordered Probit Regression
MCMCordfactanal() MCMC for Ordinal Data Factor Analysis Model
MCMCpoisson() MCMC for Poisson Regression
MCMCpoissonChange() MCMC for a Poisson Regression Changepoint

Model
MCMCprobit() MCMC for Probit Regression
MCMCquantreg() Bayesian quantile regression using Gibbs sam-

pling
MCMCregress() MCMC for Gaussian Linear Regression
MCMCtobit() MCMC for Gaussian Linear Regression with a

Censored-Dependent Variable

Table 5.2: Bayesian Modeling Functions Available within the MCMCpack Library
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5.5 Multivariate statistics and discriminant
procedures

This section includes a sampling of commonly used multivariate, clustering
methods, and discriminant procedures [42, 67]. The CRAN Task Views on
multivariate statistics, cluster analysis and psychometrics provide additional
descriptions of available functionality.

5.5.1 Cronbach’s alpha
Example: See 5.7.17

Cronbach’s α is a statistic that summarizes the internal consistency and relia-
bility of a set of items comprising a measure.

library(multilevel)
cronbach(cbind(x1, x2, ..., xk))

5.5.2 Factor analysis
Example: See 5.7.18

Factor analysis is used to explain variability of a set of measures in terms of
underlying unobservable factors. The observed measures can be expressed as
linear combinations of the factors, plus random error. Factor analysis is often
used as a way to guide the creation of summary scores from individual items.

res = factanal(~ x1 + x2 + ... + xk, factors=nfact)
print(res, cutoff=cutoffval, sort=TRUE)

By default no scores are produced (this is controlled with the scores option). A
rotation function must be specified: options include varimax() and promax()).
When printing factanal objects, values less than the specified cutoff (in abso-
lute value) are not displayed.

5.5.3 Principal component analysis
Example: See 5.7.19

Principal component analysis is a data reduction technique which can create
uncorrelated variables which account for some of the variability in a set of
variables.

newds = na.omit(data.frame(x1, x2, ..., xk))
pcavals = prcomp(newds, scale=TRUE)
summary(pcavals)

The biplot() command can be used to graphically present the results, with
the choices option allowing specification of which factors to plot.
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5.5.4 Recursive partitioning
Example: See 5.7.20

Recursive partitioning is used to create a decision tree to classify observations
from a dataset based on categorical predictors. This functionality is available
within the rpart package.

library(rpart)
rpartout = rpart(x1 ~ x2 + x3 + ... + xk, method="class",

data=ds)
printcp(rpartout)
plot(rpartout)
text(rpartout)

Supported methods include anova, class, exp, or poisson. The printcp(),
plot(), and text() functions operate on rpart class objects.

5.5.5 Linear discriminant analysis
Example: See 5.7.21

Linear (or Fisher) discriminant analysis is used to find linear combinations of
variables that can separate classes.

library(MASS)
ngroups = length(unique(y))
ldamodel = lda(y ~ x1 + ... + xk, prior=rep(1/ngroups, ngroups),

data=ds)
print(ldamodel)
plot(ldamodel)

The prior probabilities of class membership can be left unspecified, or given in
the order of the factor levels. Details on display of lda objects can be found
using help(plot.lda).

5.5.6 Hierarchical clustering
Example: See 5.7.22

Many techniques exist for grouping similar variables or similar observations.
These groups, or clusters, can be overlapping or disjoint, and are sometimes
placed in a hierarchical structure so that some disjoint clusters share a higher-
level cluster. Clustering tools available include hclust() and kmeans(). The
function dendrogram(), also in the stats package, plots tree diagrams. The
cluster() package contains functions pam(), clara(), and diana(). The
CRAN Clustering Task View has more details (see also 6.6.9, visualizing cor-
relation matrices).

cormat = cor(cbind(x1, x2, ..., xk), use="pairwise.complete.obs")
hclustobj = hclust(dist(cormat))
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5.6 Further resources

Many of the topics covered in this chapter are active areas of statistical research
and many foundational articles are still useful. Here we provide references to
texts which serve as accessible references.

Dobson and Barnett [9] presents an accessible introduction to generalized
linear models, while McCullagh and Nelder’s work [43] remains a classic. Agresti
[1] describes the analysis of categorical data.

Fitzmaurice, Laird, and Ware [17] provide an accessible overview of mixed
effects methods while West, Welch, and Galecki [78] review these methods for
a variety of statistical packages. A comprehensive review of the material in this
chapter is incorporated in Faraway’s text [15]. The text by Hardin and Hilbe
[23] provides a review of generalized estimating equations. The CRAN Task
View on Analysis of Spatial Data provides a summary of tools to read, visu-
alize, and analyze spatial data. Collett [5] presents an accessible introduction
to survival analysis. Gelman, Carlin, Stern, Rubin [21] provide a comprehen-
sive introduction to Bayesian inference, while Albert [2] focuses on use of R
for Bayesian computations. Särndal, Swensson, and Wretman [62] provide a
readable overview of the analysis of data from complex surveys, while Amico
[8] describes the implementations within R.

Manly [42] and Tabachnick and Fidell [67] provide a comprehensive intro-
duction to multivariate statistics. The CRAN Task View on Psychometric mod-
els and methods describe support for Rasch, item response, structural equation
and related models, while the Multivariate Statistics View includes sections on
visualization, testing, multivariate distributions, projection and scaling meth-
ods, classification, correspondence analysis, and latent variable approaches.

5.7 HELP examples

To help illustrate the tools presented in this chapter, we apply many of the
entries to the HELP data. The code for these examples can be downloaded
from http://www.math.smith.edu/r/examples.

> options(digits=3)

> options(width=67)

> options(show.signif.stars=FALSE)

> load("savedfile") # this was created in chapter 2

> attach(ds)

We begin by loading (2.1.1) the HELP dataset using a saved file that was
created in Section 2.13.3.

http://www.math.smith.edu/r/examples
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5.7.1 Logistic regression

In this example, we fit a logistic regression (5.1.1) to model the probability of
being homeless (spending one or more nights in a shelter or on the street in the
past six months) as a function of predictors. We use the glm() command to
fit the logistic regression model.

> logres = glm(homeless ~ female + i1 + substance + sexrisk +

+ indtot, binomial, data=ds)

> names(logres)

[1] "coefficients" "residuals" "fitted.values"
[4] "effects" "R" "rank"
[7] "qr" "family" "linear.predictors"
[10] "deviance" "aic" "null.deviance"
[13] "iter" "weights" "prior.weights"
[16] "df.residual" "df.null" "y"
[19] "converged" "boundary" "model"
[22] "call" "formula" "terms"
[25] "data" "offset" "control"
[28] "method" "contrasts" "xlevels"
> anova(logres)
Analysis of Deviance Table
Model: binomial, link: logit
Response: homeless
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 452 625
female 1 4.37 451 621
i1 1 25.79 450 595
substance 2 3.67 448 591
sexrisk 1 5.97 447 585
indtot 1 8.84 446 577
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> summary(logres)

Call:
glm(formula = homeless ~ female + i1 + substance + sexrisk +

indtot, family = binomial, data = ds)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.75 -1.04 -0.70 1.13 2.03

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.13192 0.63347 -3.37 0.00076
female -0.26170 0.25146 -1.04 0.29800
i1 0.01749 0.00631 2.77 0.00556
substancecocaine -0.50335 0.26453 -1.90 0.05707
substanceheroin -0.44314 0.27030 -1.64 0.10113
sexrisk 0.07251 0.03878 1.87 0.06152
indtot 0.04669 0.01622 2.88 0.00399

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 625.28 on 452 degrees of freedom
Residual deviance: 576.65 on 446 degrees of freedom
AIC: 590.7

Number of Fisher Scoring iterations: 4

More information can be found in the summary() output object.

> names(summary(logres))

[1] "call" "terms" "family"
[4] "deviance" "aic" "contrasts"
[7] "df.residual" "null.deviance" "df.null"
[10] "iter" "deviance.resid" "coefficients"
[13] "aliased" "dispersion" "df"
[16] "cov.unscaled" "cov.scaled"



138 CHAPTER 5. REGRESSION GENERALIZATIONS

> summary(logres)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.1319 0.63347 -3.37 0.000764
female -0.2617 0.25146 -1.04 0.297998
i1 0.0175 0.00631 2.77 0.005563
substancecocaine -0.5033 0.26453 -1.90 0.057068
substanceheroin -0.4431 0.27030 -1.64 0.101128
sexrisk 0.0725 0.03878 1.87 0.061518
indtot 0.0467 0.01622 2.88 0.003993

5.7.2 Poisson regression

In this example we fit a Poisson regression model (5.1.3) for i1, the average
number of drinks per day in the 30 days prior to entering the detox center.

> poisres = glm(i1 ~ female + substance + age, poisson)

> summary(poisres)

Call:
glm(formula = i1 ~ female + substance + age, family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-7.57 -3.69 -1.40 1.04 15.99

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.89785 0.05827 49.73 < 2e-16
female -0.17605 0.02802 -6.28 3.3e-10
substancecocaine -0.81715 0.02776 -29.43 < 2e-16
substanceheroin -1.12117 0.03392 -33.06 < 2e-16
age 0.01321 0.00145 9.08 < 2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 8898.9 on 452 degrees of freedom
Residual deviance: 6713.9 on 448 degrees of freedom
AIC: 8425

Number of Fisher Scoring iterations: 6

It is always important to check assumptions for models. This is particularly
true for Poisson models, which are quite sensitive to model departures. There
is support for Pearson’s χ2 goodness of fit test.
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> library(vcd)

> poisfit = goodfit(e2b, "poisson")

> summary(poisfit)

Goodness-of-fit test for poisson distribution

X^2 df P(> X^2)
Likelihood Ratio 208 10 3.6e-39

The results indicate that the fit is poor (χ2
10 = 208, p < 0.0001); the Poisson

model does not appear to be tenable.

5.7.3 Zero-inflated Poisson regression

A zero-inflated Poisson regression model (5.1.5) might fit better.

> library(pscl)

Classes and Methods for R developed in the
Political Science Computational Laboratory
Department of Political Science
Stanford University
Simon Jackman
hurdle and zeroinfl functions by Achim Zeileis

> res = zeroinfl(i1 ~ female + substance + age | female, data=ds)

> res

Call:
zeroinfl(formula = i1 ~ female + substance + age | female,

data = ds)

Count model coefficients (poisson with log link):
(Intercept) female substancecocaine

3.05781 -0.06797 -0.72466
substanceheroin age

-0.76086 0.00927

Zero-inflation model coefficients (binomial with logit link):
(Intercept) female

-1.979 0.843

Women are more likely to abstain from alcohol than men (p=0.0025), as well
as drink less when they drink (p=0.015). Other significant predictors include
substance and age, though model assumptions for count models should always
be carefully verified [26].
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5.7.4 Negative binomial regression

A negative binomial regression model (5.1.6) might improve on the Poisson.

> library(MASS)

> nbres = glm.nb(i1 ~ female + substance + age)

> summary(nbres)

Call:
glm.nb(formula = i1 ~ female + substance + age,

init.theta = 0.810015139, link = log)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.414 -1.032 -0.278 0.241 2.808

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.01693 0.28928 10.43 < 2e-16
female -0.26887 0.12758 -2.11 0.035
substancecocaine -0.82360 0.12904 -6.38 1.7e-10
substanceheroin -1.14879 0.13882 -8.28 < 2e-16
age 0.01072 0.00725 1.48 0.139

(Dispersion parameter for Negative Binomial(0.81) family
taken to be 1)

Null deviance: 637.82 on 452 degrees of freedom
Residual deviance: 539.60 on 448 degrees of freedom
AIC: 3428

Number of Fisher Scoring iterations: 1

Theta: 0.8100
Std. Err.: 0.0589

2 x log-likelihood: -3416.3340

The deviance / DF is close to 1, suggesting a reasonable fit.

5.7.5 LASSO model selection

In this section, we can provide guidance on selecting a regression model for the
CESD score as a function of a large number of predictors (e.g., in a data mining
setting) using the lasso method (5.4.4). Here we illustrate the technique with
a set of 5 predictors.
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> library(lars)

> lassores = lars(cbind(female, i1, age, mcs, pcs, homeless),

+ cesd, type="lasso")

> print(lassores)

Call:
lars(x=cbind(female, i1, age, mcs, pcs, homeless), y=cesd,

type = "lasso")
R-squared: 0.526
Sequence of LASSO moves:

mcs pcs i1 female age homeless
Var 4 5 2 1 3 6
Step 1 2 3 4 5 6

> coef(lassores)

female i1 age mcs pcs homeless
[1,] 0.00 0.00000 0.0000 0.000 0.000 0.000
[2,] 0.00 0.00000 0.0000 -0.426 0.000 0.000
[3,] 0.00 0.00000 0.0000 -0.552 -0.149 0.000
[4,] 0.00 0.00522 0.0000 -0.561 -0.159 0.000
[5,] 1.81 0.04367 0.0000 -0.611 -0.207 0.000
[6,] 1.98 0.04802 -0.0143 -0.615 -0.213 0.000
[7,] 2.45 0.05743 -0.0518 -0.624 -0.229 0.342

> summary(lassores)

LARS/LASSO
Call: lars(x=cbind(female, i1, age, mcs, pcs, homeless), y=cesd,
Call: type = "lasso")
Df Rss Cp

0 1 70788 490.10
1 2 42098 110.67
2 3 35796 28.89
3 4 35448 26.27
4 5 33727 5.38
5 6 33647 6.31
6 7 33548 7.00

The estimated standardized coefficients are displayed in Figure 5.1. If the
constraint was set to 0.5, only variables 4 and 5 (MCS and PCS) would be
included in the model.
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> plot(lassores)
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Figure 5.1: LASSO regression results.

5.7.6 Quantile regression

In this section, we fit a quantile regression model (5.4.5) of the number of drinks
(i1) as a function of predictors, modeling the 75th percentile (Q3).

> library(quantreg)

> quantres = rq(i1 ~ female + substance + age, tau=0.75,

+ data=ds)
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> summary(quantres)

Call: rq(formula = i1 ~ female + substance + age, tau=0.75)

tau: [1] 0.75

Coefficients:
coefficients lower bd upper bd

(Intercept) 29.636 14.150 42.603
female -2.909 -7.116 3.419
substancecocaine -20.091 -29.011 -15.460
substanceheroin -22.636 -28.256 -19.115
age 0.182 -0.153 0.468

> detach("package:quantreg")

Because the quantreg package overrides needed functionality in other packages,
we detach() it after running the rq() function (see 1.5.6).

5.7.7 Ordinal logit

To demonstrate an ordinal logit analysis (5.1.9), we first create an ordinal cat-
egorical variable from the sexrisk variable, then model this three-level ordinal
variable as a function of cesd and pcs.

> library(MASS)

> sexriskcat = as.factor(as.numeric(sexrisk>=2) +

+ as.numeric(sexrisk>=6))

> table(sexriskcat)

sexriskcat
0 1 2
58 244 151



144 CHAPTER 5. REGRESSION GENERALIZATIONS

> ologit = polr(sexriskcat ~ cesd + pcs)

> summary(ologit)

Call:
polr(formula = sexriskcat ~ cesd + pcs)

Coefficients:
Value Std. Error t value

cesd -3.72e-05 0.00762 -0.00489
pcs 5.23e-03 0.00876 0.59648

Intercepts:
Value Std. Error t value

0|1 -1.669 0.562 -2.971
1|2 0.944 0.556 1.698

Residual Deviance: 871.76
AIC: 879.76

5.7.8 Multinomial logit

We can fit a multinomial logit (5.1.10) model for the categorized sexrisk vari-
able.
> library(VGAM)

> mlogit = vglm(sexriskcat ~ cesd + pcs, family=multinomial())
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> summary(mlogit)

Call:
vglm(formula = sexriskcat ~ cesd + pcs, family = multinomial())

Pearson Residuals:
Min 1Q Median 3Q Max

log(mu[,1]/mu[,3]) -0.8 -0.7 -0.2 -0.1 3
log(mu[,2]/mu[,3]) -1.3 -1.2 0.8 0.9 1

Coefficients:
Value Std. Error t value

(Intercept):1 -0.686 0.948 -0.7
(Intercept):2 0.791 0.639 1.2
cesd:1 0.007 0.013 0.5
cesd:2 -0.007 0.009 -0.8
pcs:1 -0.010 0.015 -0.7
pcs:2 -0.002 0.010 -0.2

Number of linear predictors: 2

Names of linear predictors:
log(mu[,1]/mu[,3]), log(mu[,2]/mu[,3])

Dispersion Parameter for multinomial family: 1

Residual Deviance: 870 on 900 degrees of freedom

Log-likelihood: -435 on 900 degrees of freedom

Number of Iterations: 4

> detach("package:VGAM")

Because the VGAM package overrides needed functionality in other packages, we
detach() it after running the vglm() function (see 1.5.6).

5.7.9 Generalized additive model

We can fit a generalized additive model (5.4.2), and generate a plot.

> library(gam)

> gamreg= gam(cesd ~ female + lo(pcs) + substance)
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> summary(gamreg)

Call: gam(formula = cesd ~ female + lo(pcs) + substance)
Deviance Residuals:

Min 1Q Median 3Q Max
-29.16 -8.14 0.81 8.23 29.25

(Dispersion Parameter for gaussian family taken to be 135)

Null Deviance: 70788 on 452 degrees of freedom
Residual Deviance: 60288 on 445 degrees of freedom
AIC: 3519

Number of Local Scoring Iterations: 2

DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)
(Intercept) 1
female 1
lo(pcs) 1 3.1 3.77 0.010
substance 2

> coefficients(gamreg)

(Intercept) female lo(pcs)
46.524 4.339 -0.277

substancecocaine substanceheroin
-3.956 -0.205

The estimated smoothing function is displayed in Figure 5.2.

> plot(gamreg, terms=c("lo(pcs)"), se=2, lwd=3)

> abline(h=0)

5.7.10 Reshaping dataset for longitudinal regression

A wide (multivariate) dataset can be reshaped (2.5.3) into a tall (longitudinal)
dataset. Here we create time-varying variables (with a suffix tv) as well as keep
baseline values (without the suffix). There are four lines in the long dataset for
every line in the original dataset. We use the reshape() command to transpose
the dataset.
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Figure 5.2: Plot of the smoothed association between PCS and CESD.

> long = reshape(ds, idvar="id",

+ varying=list(c("cesd1","cesd2","cesd3","cesd4"),

+ c("mcs1","mcs2","mcs3","mcs4"), c("i11","i12","i13","i14"),

+ c("g1b1","g1b2","g1b3","g1b4")),

+ v.names=c("cesdtv","mcstv","i1tv","g1btv"),

+ timevar="time", times=1:4, direction="long")

> detach(ds)

We can check the resulting dataset by printing tables by time,

> table(long$g1btv, long$time)

1 2 3 4
0 219 187 225 245
1 27 22 22 21

or by looking at the observations over time for a given individual.
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> attach(long)

> long[id==1, c("id", "time", "cesd", "cesdtv")]

id time cesd cesdtv
1.1 1 1 49 7
1.2 1 2 49 NA
1.3 1 3 49 8
1.4 1 4 49 5

> detach(long)

This process can be reversed, creating a wide dataset from a tall one with
another call to reshape().

> wide = reshape(long,

+ v.names=c("cesdtv", "mcstv", "i1tv", "g1btv"),

+ idvar="id", timevar="time", direction="wide")

> wide[c(2,8), c("id", "cesd", "cesdtv.1", "cesdtv.2",

+ "cesdtv.3", "cesdtv.4")]

id cesd cesdtv.1 cesdtv.2 cesdtv.3 cesdtv.4
2.1 2 30 11 NA NA NA
8.1 8 32 18 NA 25 NA

5.7.11 Linear model for correlated data

Here we fit a general linear model for correlated data (modeling the covariance
matrix directly, 5.2.1). In this example, the estimated correlation matrix for
the seventh subject is printed (this subject was selected because all four time
points were observed).

> library(nlme)

> glsres = gls(cesdtv ~ treat + as.factor(time),

+ correlation=corSymm(form = ~ time | id),

+ weights=varIdent(form = ~ 1 | time), long,

+ na.action=na.omit)
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> summary(glsres)

Generalized least squares fit by REML
Model: cesdtv ~ treat + as.factor(time)
Data: long
AIC BIC logLik
7550 7623 -3760

Correlation Structure: General
Formula: ~time | id
Parameter estimate(s):
Correlation:
1 2 3

2 0.584
3 0.639 0.743
4 0.474 0.585 0.735
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | time
Parameter estimates:

1 3 4 2
1.000 0.996 0.996 1.033

Coefficients:
Value Std.Error t-value p-value

(Intercept) 23.66 1.098 21.55 0.000
treat -0.48 1.320 -0.36 0.716
as.factor(time)2 0.28 0.941 0.30 0.763
as.factor(time)3 -0.66 0.841 -0.78 0.433
as.factor(time)4 -2.41 0.959 -2.52 0.012

Correlation:
(Intr) treat as.()2 as.()3

treat -0.627
as.factor(time)2 -0.395 0.016
as.factor(time)3 -0.433 0.014 0.630
as.factor(time)4 -0.464 0.002 0.536 0.708

Standardized residuals:
Min Q1 Med Q3 Max

-1.643 -0.874 -0.115 0.708 2.582

Residual standard error: 14.4
Degrees of freedom: 969 total; 964 residual



150 CHAPTER 5. REGRESSION GENERALIZATIONS

> anova(glsres)

Denom. DF: 964
numDF F-value p-value

(Intercept) 1 1168 <.0001
treat 1 0 0.6887
as.factor(time) 3 4 0.0145

A set of parallel boxplots (6.1.12) by time can be generated using the following
commands. Results are displayed in Figure 5.3.

> library(lattice)

> bwplot(cesdtv ~ as.factor(treat)| time, xlab="TREAT",

+ strip=strip.custom(strip.names=TRUE, strip.levels=TRUE),

+ ylab="CESD", layout=c(4,1), col="black", data=long,

+ par.settings=list(box.rectangle=list(col="black"),

+ box.dot=list(col="black"),

+ box.umbrella=list(col="black")))
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Figure 5.3: Side-by-side boxplots of CESD by treatment and time.
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5.7.12 Linear mixed (random slope) model

Here we fix a mixed effects, or random slope model (5.2.3). We specify a cate-
gorical fixed effect of time but a random slope across time treated continuously.
We begin by creating an as.factor() version of time. As an alternative, we
could nest the call to as.factor() within the call to lme().

> attach(long)

> tf = as.factor(time)

> library(nlme)

> lmeslope = lme(fixed=cesdtv ~ treat + tf,

+ random=~ time |id, data=long, na.action=na.omit)

> print(lmeslope)

Linear mixed-effects model fit by REML
Data: long
Log-restricted-likelihood: -3772
Fixed: cesdtv ~ treat + tf

(Intercept) treat tf2 tf3 tf4
23.8843 -0.4353 -0.0614 -1.0142 -2.5776

Random effects:
Formula: ~time | id
Structure: General positive-definite, Log-Cholesky param

StdDev Corr
(Intercept) 13.73 (Intr)
time 3.03 -0.527
Residual 7.85

Number of Observations: 969
Number of Groups: 383

> anova(lmeslope)

numDF denDF F-value p-value
(Intercept) 1 583 1163 <.0001
treat 1 381 0 0.7257
tf 3 583 3 0.0189

The random.effects() and predict() functions are used to find the predicted
random effects and predicted values, respectively.

> reffs = random.effects(lmeslope)

> reffs[1,]

(Intercept) time
1 -13.5 -0.0239
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> predval = predict(lmeslope, newdata=long, level=0:1)

> predval[id==1,]

id predict.fixed predict.id
1.1 1 23.4 9.94
1.2 1 23.4 9.86
1.3 1 22.4 8.88
1.4 1 20.9 7.30

> vc = VarCorr(lmeslope)

> summary(vc)

Variance StdDev Corr
9.17:1 3.03:1 :1
61.58:1 7.85:1 -0.527:1
188.43:1 13.73:1 (Intr):1

> detach(long)

The VarCorr() function calculates the variances, standard deviations and cor-
relations between the random effects terms, as well as the within-group error
variance and standard deviation.

5.7.13 Generalized estimating equations

We fit a generalized estimating equation (GEE) model (5.2.7), using an ex-
changeable working correlation matrix and empirical variance [39]. Note that
in the current release of the gee package, unstructured working correlations are
not supported with nonmonotone missingness.

> library(gee)

> sortlong = long[order(long$id),]

> attach(sortlong)

> form = formula(g1btv ~ treat + time)

> geeres = gee(formula = form, id=id, data=sortlong,

+ family=binomial, na.action=na.omit,

+ corstr="exchangeable")

(Intercept) treat time
-1.9649 0.0443 -0.1256

In addition to returning an object with results, the gee() function displays the
coefficients from a model assuming that all observations are uncorrelated.
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> coef(geeres)

(Intercept) treat time
-1.85169 -0.00874 -0.14593

> sqrt(diag(geeres$robust.variance))

(Intercept) treat time
0.2723 0.2683 0.0872

> geeres$working.correlation

[,1] [,2] [,3] [,4]
[1,] 1.000 0.299 0.299 0.299
[2,] 0.299 1.000 0.299 0.299
[3,] 0.299 0.299 1.000 0.299
[4,] 0.299 0.299 0.299 1.000

5.7.14 Generalized linear mixed model

Here we fit a generalized linear mixed model (GLMM) (5.2.6), predicting recent
suicidal ideation as a function of treatment, depressive symptoms (CESD) and
time. Each subject is assumed to have their own random intercept.

> library(lme4)

> glmmres = lmer(g1btv ~ treat + cesdtv + time + (1|id),

+ family=binomial(link="logit"), data=long)

> summary(glmmres)
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Generalized linear mixed model fit by the Laplace approximation
Formula: g1btv ~ treat + cesdtv + time + (1 | id)

Data: long
AIC BIC logLik deviance
480 504 -235 470
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 32.6 5.71
Number of obs: 968, groups: id, 383

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.7632 1.2802 -6.85 7.6e-12
treat -0.0417 1.2159 -0.03 0.97
cesdtv 0.1018 0.0237 4.30 1.7e-05
time -0.2426 0.1837 -1.32 0.19

Correlation of Fixed Effects:
(Intr) treat cesdtv

treat -0.480
cesdtv -0.641 -0.025
time -0.366 0.009 0.028

5.7.15 Cox proportional hazards model

We fit a proportional hazards model (5.3.1) for the time to linkage to primary
care, with randomization group, age, gender, and CESD as predictors. Here
we request the Breslow estimator (the default is the Efron estimator).

> library(survival)

> survobj = coxph(Surv(dayslink, linkstatus) ~ treat + age +

+ female + cesd, method="breslow", data=ds)
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> print(survobj)

Call:
coxph(formula = Surv(dayslink, linkstatus) ~ treat + age +

female + cesd, data = ds, method = "breslow")

coef exp(coef) se(coef) z p
treat 1.65186 5.217 0.19324 8.548 0.000
age 0.02467 1.025 0.01032 2.391 0.017
female -0.32535 0.722 0.20379 -1.597 0.110
cesd 0.00235 1.002 0.00638 0.369 0.710

Likelihood ratio test=94.6 on 4 df, p=0 n=431 (22 observations
deleted due to missingness)

5.7.16 Bayesian Poisson regression

In this example, we fit a Poisson regression model to the count of alcohol
drinks in the HELP study as fit previously (5.7.2), this time using Markov
Chain Monte Carlo methods (5.4.7).

> ds = read.csv("http://www.math.smith.edu/r/data/help.csv")
> attach(ds)
> library(MCMCpack)
Loading required package: coda
Loading required package: lattice
Loading required package: MASS
##
## Markov Chain Monte Carlo Package (MCMCpack)
## Copyright (C) 2003-2008 Andrew D. Martin, Kevin M. Quinn,
## and Jonh Hee Park
## Support provided by the U.S. National Science Foundation
## (Grants SES-0350646 and SES-0350613)
##
> posterior = MCMCpoisson(i1 ~ female + as.factor(substance) +

age)
The Metropolis acceptance rate for beta was 0.27891

http://www.math.smith.edu/r/data/help.csv
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> summary(posterior)
Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:
Mean SD Naive SE TS-SE

(Intercept) 2.8959 0.05963 5.96e-04 0.002858
female -0.1752 0.02778 2.78e-04 0.001085
as.factor(subs)cocaine -0.8176 0.02727 2.73e-04 0.001207
as.factor(subs)heroin -1.1199 0.03430 3.43e-04 0.001333
age 0.0133 0.00148 1.48e-05 0.000071

2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%

(Intercept) 2.7807 2.8546 2.8952 2.9390 3.0157
female -0.2271 -0.1944 -0.1754 -0.1567 -0.1184
as.factor(subs)cocaine -0.8704 -0.8364 -0.8174 -0.7992 -0.7627
as.factor(subs)heroin -1.1858 -1.1430 -1.1193 -1.0967 -1.0505
age 0.0103 0.0122 0.0133 0.0143 0.0160

Default plots are available for MCMC objects returned by MCMCpack. These can
be displayed using the command plot(posterior).

5.7.17 Cronbach’s alpha

We begin by calculating Cronbach’s α for the 20 items comprising the CESD
(Center for Epidemiologic Studies–Depression scale).

> library(multilevel)

> cronbach(cbind(f1a, f1b, f1c, f1d, f1e, f1f, f1g, f1h, f1i,

+ f1j, f1k, f1l, f1m, f1n, f1o, f1p, f1q, f1r, f1s, f1t))

$Alpha
[1] 0.761

$N
[1] 446

The observed α of 0.76 from the HELP study is relatively low: this may be due
to ceiling effects for this sample of subjects recruited in a detoxification unit.
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5.7.18 Factor analysis

Here we consider a maximum likelihood factor analysis with varimax rota-
tion for the individual items of the cesd (Center for Epidemiologic Studies–
Depression) scale. The individual questions can be found in Table A.2 in the
Appendix. We arbitrarily force three factors.

> res = factanal(~ f1a + f1b + f1c + f1d + f1e + f1f + f1g +

+ f1h + f1i + f1j + f1k + f1l + f1m + f1n + f1o + f1p + f1q +

+ f1r + f1s + f1t, factors=3, rotation="varimax",

+ na.action=na.omit, scores="regression")

> print(res, cutoff=0.45, sort=TRUE)
Call:
factanal(x = ~f1a + f1b + f1c + f1d + f1e + f1f + f1g + f1h +

f1i + f1j + f1k + f1l + f1m + f1n + f1o + f1p + f1q + f1r +
f1s + f1t, factors = 3, na.action = na.omit,
scores = "regression", rotation = "varimax")

Uniquenesses:
f1a f1b f1c f1d f1e f1f f1g f1h f1i f1j

0.745 0.768 0.484 0.707 0.701 0.421 0.765 0.601 0.616 0.625
f1k f1l f1m f1n f1o f1p f1q f1r f1s f1t

0.705 0.514 0.882 0.623 0.644 0.407 0.713 0.467 0.273 0.527
Loadings:

Factor1 Factor2 Factor3
f1c 0.618
f1e 0.518
f1f 0.666
f1k 0.523
f1r 0.614
f1h -0.621
f1l -0.640
f1p -0.755
f1o 0.532
f1s 0.802
f1a
f1b
f1d -0.454
f1g 0.471
f1i 0.463
f1j 0.495
f1m
f1n 0.485
f1q 0.457
f1t 0.489
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Factor1 Factor2 Factor3
SS loadings 3.847 2.329 1.636
Proportion Var 0.192 0.116 0.082
Cumulative Var 0.192 0.309 0.391

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 289 on 133 degrees of freedom.
The p-value is 1.56e-13

The item loadings match our intuitions. We see that the second factor loads on
the reverse-coded items (H, L, P, and D, see 2.13.5). Factor 3 loads on items
O and S (people were unfriendly and I felt that people dislike me).

5.7.19 Principal component analysis

Here we estimate the principal components for the variables representing the
mental component score, CESD score, drug risk, sex risk, and inventory of drug
use consequences.

> ds = read.csv("http://www.math.smith.edu/r/data/help.csv")

> attach(ds)

> smallds = na.omit(data.frame(-mcs, cesd1, drugrisk, sexrisk,

indtot))

> pcavals = prcomp(smallds, scale=TRUE)

> pcavals
Standard deviations:
[1] 1.308 1.008 0.979 0.883 0.731

Rotation:
PC1 PC2 PC3 PC4 PC5

X.mcs -0.621 0.0522 0.135 0.104 0.7634
cesd1 -0.416 0.3595 0.684 -0.075 -0.4734
drugrisk -0.394 0.3055 -0.576 -0.629 -0.1541
sexrisk -0.222 -0.8482 0.196 -0.428 -0.0984
indtot -0.487 -0.2351 -0.379 0.636 -0.3996
> summary(pcavals)
Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 1.308 1.008 0.979 0.883 0.731
Proportion of Variance 0.342 0.203 0.192 0.156 0.107
Cumulative Proportion 0.342 0.546 0.737 0.893 1.000

The biplot() command can be used to graphically present the results. Figure
5.4 displays these values for the first and second component, with a small size
specified for the observations.

http://www.math.smith.edu/r/data/help.csv
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> biplot(pcavals, choices=c(1,2), cex=c(0.4, 1))

The first component appears to be associated with all of the variables except
sexrisk, while the second component is associated primarily with that variable.
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Figure 5.4: Biplot of first and second principal component.

5.7.20 Recursive partitioning

In this example, we attempt to classify subjects based on their homeless status,
using gender, drinking, primary substance, RAB sex risk, MCS, and PCS as
predictors.

> library(rpart)

> sub = as.factor(substance)

> homeless.rpart = rpart(homeless ~ female + i1 + sub +

+ sexrisk + mcs + pcs, method="class", data=ds)
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> printcp(homeless.rpart)

Classification tree:
rpart(formula = homeless ~ female + i1 + sub + sexrisk + mcs +

pcs, data = ds, method = "class")

Variables actually used in tree construction:
[1] female i1 mcs pcs sexrisk

Root node error: 209/453 = 0.5

n= 453

CP nsplit rel error xerror xstd
1 0.10 0 1.0 1 0.05
2 0.05 1 0.9 1 0.05
3 0.03 4 0.8 1 0.05
4 0.02 5 0.7 1 0.05
5 0.01 7 0.7 1 0.05
6 0.01 9 0.7 1 0.05

Figure 5.5 displays the tree.

> plot(homeless.rpart)

> text(homeless.rpart)

To help interpret this model, we can assess the proportion of homeless among
those with i1< 3.5 by pcs divided at 31.94.

> home = homeless[i1<3.5]

> pcslow = pcs[i1<3.5]<=31.94

> table(home, pcslow)

pcslow
home FALSE TRUE

0 89 2
1 31 5

> rm(home, pcslow)

Among this subset, 71.4% (5 of 7) of those with low PCS scores are homeless,
while only 25.8% (31 of 120) of those with PCS scores above the threshold are
homeless.
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Figure 5.5: Recursive partitioning tree.

5.7.21 Linear discriminant analysis

We use linear discriminant analysis to distinguish between homeless and non-
homeless subjects, with a prior expectation that half are in each group.

> library(MASS)

> ngroups = length(unique(homeless))

> ldamodel = lda(homeless ~ age + cesd + mcs + pcs,

+ prior=rep(1/ngroups, ngroups))



162 CHAPTER 5. REGRESSION GENERALIZATIONS

> print(ldamodel)

Call:
lda(homeless ~ age + cesd + mcs + pcs, prior = rep(1/ngroups,

ngroups))

Prior probabilities of groups:
0 1

0.5 0.5

Group means:
age cesd mcs pcs

0 35.0 31.8 32.5 49.0
1 36.4 34.0 30.7 46.9

Coefficients of linear discriminants:
LD1

age 0.0702
cesd 0.0269
mcs -0.0195
pcs -0.0426

The results indicate that homeless subjects tend to be older, have higher CESD
scores, and lower MCS and PCS scores. Figure 5.6 displays the distribution
of linear discriminant function values by homeless status. The distribution of
the linear discriminant function values are shifted to the right for the homeless
subjects, though there is considerable overlap between the groups.

> plot(ldamodel)

5.7.22 Hierarchical clustering

In this example, we cluster continuous variables from the HELP dataset.

> cormat = cor(cbind(mcs, pcs, cesd, i1, sexrisk),

+ use="pairwise.complete.obs")

> hclustobj = hclust(dist(cormat))

Figure 5.7 displays the clustering. Not surprisingly, the MCS and PCS vari-
ables cluster together, since they both utilize similar questions and structures.
The cesd and i1 variables cluster together, while there is a separate node for
sexrisk.

> plot(hclustobj)
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Figure 5.6: Graphical display of assignment probabilities or score functions
from linear discriminant analysis by actual homeless status.
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Figure 5.7: Results from hierarchical clustering.



Chapter 6

Graphics

This chapter describes how to create graphical displays, such as scatterplots,
boxplots, and histograms. We provide a broad overview of the key ideas and
techniques that are available. Additional discussion of ways to annotate dis-
plays and change defaults to present publication quality figures is included, as
are details regarding how to output graphics in a variety of file formats (Sec-
tion 6.4). Because graphics are useful to visualize analyses, examples appear
throughout the HELP sections at the end of most of the chapters of the book.

Producing graphics for data analysis is simple and direct. Creating a graph
for publication is more complex and typically requires a great deal of time to
achieve the desired appearance. Our intent is to provide sufficient guidance that
most effects can be achieved, but further investigation of the documentation
and experimentation will doubtless be necessary for specific needs. There are
a huge number of options: we aim to provide a road map as well as examples
to illustrate the power of the package.

While many graphics can be generated using one command, figures are
often built up element by element. For example, an empty box can be created
with a specific set of x and y axis labels and tick marks, then points can be
added with different printing characters. Text annotations can then be added,
along with legends and other additional information. The Graphics Task View
(http://cran.r-project.org/web/views) provides a comprehensive listing
of functionality to create graphics.

A somewhat intimidating set of options is available, some of which can be
specified using the par() graphics parameters (see Section 6.3), while others
can be given as options to plotting commands (such as plot() or lines()).

A number of graphics devices support different platforms and formats. The
default varies by platform (Windows() under Windows, X11() under Linux
and quartz() under modern Mac OS X distributions). A device is created
automatically when a plotting command is run, or a device can be started in
advance to create a file in a particular format (e.g., the pdf() device).

A series of powerful add-on packages to create sophisticated graphics are
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available. These include the grid package [45], the lattice library [61], the
ggplot2 library and the ROCR package for receiver operating characteristic
curves [66]. Running example() for a specified function of interest is par-
ticularly helpful for commands shown in this chapter, as is demo(graphics).

6.1 A compendium of useful plots

6.1.1 Scatterplot
Example: See 4.7.1

See also 6.1.2 (scatterplot with multiple y values) and 6.1.5 (matrix of scatter-
plots)

plot(x, y)

Many objects have default plotting functions (e.g., for a linear model object,
plot.lm() is called). More information can be found using methods(plot).
Specifying type="n" causes nothing to be plotted (but sets up axes and draws
boxes, see 2.13.7). This technique is often useful if a plot is built up part by
part. The matplot(), matpoints(), and matlines() functions can be used to
plot columns of matrices against each other.

6.1.2 Scatterplot with multiple y values
Example: See 6.6.1See also 6.1.5 (matrix of scatterplots)

plot(x, y1, pch=pchval1) # create 1 plot with single y-axis
points(x, y2, pch=pchval2)
...
points(x, yk, pch=pchvalk)

or
# create 1 plot with 2 separate y axes
addsecondy = function(x, y, origy, yname="Y2") {

prevlimits = range(origy)
axislimits = range(y)
axis(side=4, at=prevlimits[1] + diff(prevlimits)*c(0:5)/5,

labels=round(axislimits[1] + diff(axislimits)*c(0:5)/5, 1))
mtext(yname, side=4)
newy = (y-axislimits[1])/

(diff(axislimits)/diff(prevlimits)) + prevlimits[1]
points(x, newy, pch=2)

}
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plottwoy = function(x, y1, y2, xname="X", y1name="Y1",
y2name="Y2")

{
plot(x, y1, ylab=y1name, xlab=xname)
addsecondy(x, y2, y1, yname=y2name)

}
plottwoy(x, y1, y2, y1name="Y1", y2name="Y2")

To create a figure with a single y axis value, it is straightforward to repeatedly
call points() or other functions to add elements.

In the second example, two functions addsecondy() and plottwoy() are
defined to add points on a new scale and an appropriate axis on the right. This
involves rescaling and labeling the second axis (side=4) with six tick marks, as
well as rescaling the y2 variable.

6.1.3 Bubble plot
Example: See 6.6.2

A bubble plot is a trivariate plot in which the size of the circle plotted on the
scatterplot axes is proportional to a third variable. (see also 6.2.14, plotting
symbols).

symbols(x, y, circles=z)

The vector given by the circles option denotes the radii of the circles.

6.1.4 Sunflower plot

Sunflower plots [10] are designed to display multiple observations (overplotting)
at the same plotting position by adding additional components to the plotting
symbol based on how many are at that position. Another approach to this
problem involves jittering data (see 6.2.3).

sunflowerplot(x, y)

6.1.5 Matrix of scatterplots
Example: See 6.6.8

pairs(data.frame(x1, ..., xk))

The pairs() function is quite flexible, since it calls user-specified functions to
determine what to display on the lower triangle, diagonal, and upper triangle
(see examples(pairs) for illustration of its capabilities).
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6.1.6 Conditioning plot

A conditioning plot is used to display a scatterplot for each level of one or two
classification variables, as below.

Example: See 6.6.3
library(lattice)
coplot(y ~ x1 | x2*x3)

The coplot() function displays plots of y and x1, stratified by x2 and x3. All
variables may be either numeric or factors.

6.1.7 Barplot

While not typically an efficient graphical display, there are times when a barplot
is appropriate to display counts by groups.

barplot(table(x1, x2), legend=c("grp1", "grp2"), xlab="X2")

or
library(lattice)
barchart(table(x1, x2, x3))

The input for the barplot() function is given as the output of a one- or two-
dimensional contingency table, while the barchart() function available in the
library(lattice) supports three-dimensional tables (see example(barplot)
and example(barchart)). A similar dotchart() function produces a horizon-
tal slot for each group with a dot reflecting the frequency.

6.1.8 Dotplot
Example: See 6.6.5

dotplot(~ x1 + x2, pch=c("1","2"))

The dotplot() function in library(lattice) is useful for displaying labeled
quantitative values [32]. In this example, two values are plotted for each level
of the variable y.

6.1.9 Histogram
Example: See 3.6.1

The example in Section 3.6.1 demonstrates how to annotate a histogram with
an overlaid normal or kernel density estimates. Similar estimates are available
for all other supported densities (see Table 2.1).

hist(x)
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The default behavior for a histogram is to display frequencies on the vertical
axis; probability densities can be displayed using the freq=FALSE option. The
default title is given by paste("Histogram of" , x) where x is the name of
the variable being plotted; this can be changed with the main option.

6.1.10 Stem-and-leaf plot
Example: See 4.7.4

Stem-and-leaf plots are text-based graphics that are particularly useful to de-
scribe the distribution of small datasets.

stem(x)

The scale option can be used to increase or decrease the number of stems
(default value is 1).

6.1.11 Boxplot
Example: See 4.7.6 and 5.7.11See also 6.1.12 (side-by-side boxplots)

boxplot(x)

The boxplot() function allows sideways orientation by specifying the option
horizontal=TRUE.

6.1.12 Side-by-side boxplots
Example: See 4.7.6 and 5.7.11See also 6.1.11 (boxplots)

boxplot(y[x==0], y[x==1], y[x==2], names=c("X=0", "X=1", "X=2")

or

boxplot(y ~ x)

or
library(lattice)
bwplot(y ~ x)

The boxplot() function can be given multiple arguments of vectors to display,
or can use a formula interface (which will generate a boxplot for each level of
the variable x). A number of useful options are available, including varwidth
to draw the boxplots with widths proportional to the square root of the number
of observations in that group, horizontal to reverse the default orientation,
notch to display notched boxplots, and names to specify a vector of labels
for the groups. Boxplots can also be created using the bwplot() function in
library(lattice).
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6.1.13 Interaction plots
Example: See 4.7.6

Interaction plots are used to display means by two variables (as in a two-way
analysis of variance, 4.1.8).

interaction.plot(x1, x2, y)

The default statistic to compute is the mean; other options can be specified
using the fun option.

6.1.14 Plots for categorical data

A variety of less traditional plots can be used to graphically represent categor-
ical data. While these tend to have a low data to ink ratio, they can be useful
in figures with repeated multiples [71].

mosaicplot(table(x, y, z))
assocplot(table(x, y))

The mosaicplot() function provides a graphical representations of a two-
dimensional or higher contingency table, with the area of each box representing
the number of observations in that cell. The assocplot() function can be used
to display the deviations from independence for a two-dimensional contingency
table. Positive deviations of observed minus expected counts are above the line
and colored black, while negative deviations are below the line and colored red.

6.1.15 3-D plots

Perspective or surface plots, needle plots, and contour plots can be used to vi-
sualize data in three dimensions. These are particularly useful when a response
is observed over a grid of two-dimensional values.

persp(x, y, z)
contour(x, y, z)
image(x, y, z)

library(scatterplot3d)
scatterplot3d(x, y, z)

The values provided for x and y must be in ascending order.

6.1.16 Circular plot

Circular plots are used to analyze data that wrap (e.g., directions expressed as
angles, time of day on a 24-hour clock) [16, 33].
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library(circular)
plot.circular(x, stack=TRUE, bins=50)

6.1.17 Receiver operating characteristic (ROC) curve
Example: See 6.6.7

See also 3.3.2 (diagnostic agreement) and 5.1.1 (logistic regression)
Receiver operating characteristic curves can be used to help determine the

optimal cut-score to predict a dichotomous measure. This is particularly useful
in assessing diagnostic accuracy in terms of sensitivity (the probability of de-
tecting the disorder if it is present), specificity (the probability that a disorder
is not detected if it is not present), and the area under the curve (AUC). The
variable x represents a predictor (e.g., individual scores) and y a dichotomous
outcome. There is a close connection between the idea of the ROC curve and
goodness of fit for logistic regression, where the latter allows multiple predictors
to be used.

library(ROCR)
pred = prediction(x, y)
perf = performance(pred, "tpr", "fpr")
plot(perf)

The AUC can be calculated by specifying "auc" as an argument when calling
the performance() function.

6.1.18 Kaplan–Meier plot
Example: See 6.6.6See also 3.4.4 (logrank test)

library(survival)
fit = survfit(Surv(time, status) ~ as.factor(x), data=ds)
plot(fit, conf.int=FALSE, lty=1:length(unique(x)))

The Surv() function is used to combine survival time and status, where time is
length of follow-up (interval censored data can be accommodated via an addi-
tional parameter) and status=1 indicates an event (e.g., death) while status=0
indicated censoring. A stratified model by each level of the group variable x (see
also adding legends, 6.2.15 and different line styles, 6.3.9). More information
can be found in the CRAN Survival Task View.
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6.1.19 Plot an arbitrary function
Example: See 7.3.4

curve(expr, from, to)

The curve() function can be used to plot an arbitrary function denoted by
expr, with x values over a specified range (see also 6.2.5, lines).

6.1.20 Empirical cumulative probability density plot

Cumulative density plots are nonparametric estimates of the empirical cumu-
lative probability density function.

plot(ecdf(x))

6.1.21 Empirical probability density plot
Example: See 3.6.4 and 4.7.4

Density plots are nonparametric estimates of the empirical probability density
function.
# univariate density
plot(density(x))

or
library(GenKern)
# bivariate density
op = KernSur(x, y, na.rm=TRUE)
image(op$xords, op$yords, op$zden, col=gray.colors(100),

axes=TRUE, xlab="x var", ylab="y var"))

The bandwidth for density() can be specified using the bw and adjust options,
while the default smoother can be specified using the kernel option (possible
values include the default gaussian, rectangular, triangular, epanechnikov, bi-
weight, cosine, or optcosine). Bivariate density support is provided with the
GenKern library. Any of the three-dimensional plotting routines (see 6.1.15)
can be used to visualize the results.

6.1.22 Normal quantile-quantile plot
Example: See 4.7.4

Quantile-quantile plots are a commonly used graphical technique to assess
whether a univariate sample of random variables is consistent with a Gaus-
sian (normal) distribution.
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qqnorm(x)
qqline(x)

The qqline() function adds a straight line which goes through the first and
third quartiles.

6.2 Adding elements

It is relatively simple to add features to graphs which have been generated by
one of the functions discussed in Section 6.1. For example adding an arbitrary
line to a graphic requires only one function call (see 6.2.4).

6.2.1 Plot symbols
Example: See 3.6.2

plot(x, y, pch=pchval)

or

points(x, y, string, pch=pchval)

or
library(lattice)
xyplot(x ~ y, group=factor(groupvar), data=ds)

or
library(ggplot2)
qplot(x, y, col=factor(groupvar), shape=factor(groupvar),

data=ds)

The pch option requires either a single character or an integer code. Some
useful values include 20 (dot), 46 (point), 3 (plus), 5 (diamond), and 2 (tri-
angle) (running example(points) will display more possibilities). The size of
the plotting symbol can be changed using the cex option. The vector function
text() adds the value in the variable string to the plot at the specified loca-
tion. The examples using xyplot() and qplot() will also generate scatterplots
with different plot symbols for each level of groupvar.

6.2.2 Add points to an existing graphic
Example: See 4.7.1See also 6.2.1 (specifying plotting character)

plot(x, y)
points(x, y)
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6.2.3 Jitter points
Example: See 3.6.2

Jittering is the process of adding a negligible amount of uniform mean zero
noise to each observed value so that the number of observations sharing a value
can be easily discerned.

jitterx = jitter(x)

The default value for the range of the random uniforms is 40% of the smallest
difference between values.

6.2.4 Arbitrary straight line
Example: See 4.7.1

plot(x, y)
lines(point1, point2)

or

abline(intercept, slope)

The lines() function draws a line between the points specified by point1 and
point2, which are each vectors with values for the x and y axes. The abline()
function draws a line based on the slope-intercept form. Vertical or horizontal
lines can be specified using the v or h option to abline().

6.2.5 OLS line fit to points
Example: See 6.6.8See also 4.5.4 (confidence intervals for predicted mean)

plot(x, y)
abline(lm(y ~ x))

The abline() function accepts regression objects with a single predictor as
input.

6.2.6 Smoothed line
Example: See 3.6.2See also 5.7.9 (generalized additive models)

plot(...)
lines(lowess(x, y))

The f parameter to lowess() can be specified to control the proportion of
points which influence the local value (larger values give more smoothness).
The supsmu() (Friedman’s “super smoother”) and loess() (local polynomial
regression fitting) functions are alternative smoothers.
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6.2.7 Add grid
Example: See 2.13.7

A rectangular grid can be added to an existing plot.

grid(nx=num, ny=num)

The nx and ny options control the number of cells in the grid. If there are
specified as NULL, the grid aligns with the tick marks. The default shading is
light gray, with a dotted line. Further support for complex grids is available
within the grid.lines() function in the grid package.

6.2.8 Normal density
Example: See 4.7.4

A normal density plot can be added as an annotation to a histogram or empirical
density.

hist(x)
xvals = seq(from=min(x), to=max(x), length=100)
lines(pnorm(xvals, mean(x), sd(x))

6.2.9 Marginal rug plot
Example: See 3.6.2

A rug plot displays the marginal distribution on one of the margins of a scat-
terplot.

rug(x, side=sideval)

The rug() function adds a marginal plot to one of the sides of an existing plot
(sideval=1 for bottom (default), 2 for left, 3 for top and 4 for right side).

6.2.10 Titles
Example: See 3.6.4

title(main="main", sub="sub", xlab="xlab", ylab="ylab")

The title commands refer to the main title, subtitle, x-axis, and y-axis, respec-
tively. Some plotting commands (e.g., hist()) create titles by default, and
the appropriate option within those routines needs to be specified when calling
them.
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6.2.11 Footnotes

title(sub="sub")

The sub option for the title() function generates a subtitle.

6.2.12 Text
Example: See 3.6.2 and 7.4.3

text(x, y, labels)

Each value of the character vector labels is displayed at the specified (X,Y)
coordinate. The adj option can be used to change text justification to the left,
center (default), or right of the coordinate. The srt option can be used to
rotate text, while cex controls the size of the text. The font option to par()
allows specification of plain, bold, italic, or bold italic fonts (see the family
option to specify the name of a different font family).

6.2.13 Mathematical symbols
Example: See 2.13.7

plot(x, y)
text(x, y, expression(mathexpression))

The expression() argument can be used to embed mathematical expressions
and symbols (e.g., µ = 0, σ2 = 4) in graphical displays as text, axis la-
bels, legends, or titles. See help(plotmath) for more details on the form of
mathexpression and example(plotmath) for examples.

6.2.14 Arrows and shapes
Example: See 3.6.4, 6.1.3, and 6.6.8

arrows(x, y)
rect(xleft, ybottom, xright, ytop)
polygon(x, y)
symbols(x, y, type)

library(plotrix)
draw.circle(x, y, r)

The arrows, rect() and polygon() functions take vectors as arguments and
create the appropriate object with vertices specified by each element of those
vectors. Possible type values for the symbols command include circles, squares,
stars, thermometers, and boxplots (see also library(ellipse)).
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6.2.15 Legend
Example: See 2.13.7 and 3.6.4

plot(x, y)
legend(xval, yval, legend=c("Grp1","Grp2"), lty=1:2, col=3:4)

The legend() command can be used to add a legend at the location (xval,
yval) to distinguish groups on a display. Line styles (6.3.9) and colors (6.3.11)
can be used to distinguish the groups. A vector of legend labels, line types, and
colors can be specified using the legend, lty, and col options, respectively.

6.2.16 Identifying and locating points

locator(n)

or

identify(x, y, z)

The locator() function identifies the position of the cursor when the mouse
button is pressed. An optional argument n specifies how many values to return.
The identify() function works in the same fashion, but displays the value of
the variable z that is closest to the selected point.

6.3 Options and parameters

Many options can be given to plots. Depending on the particular situation,
these are given as arguments to plot(), par(), or other high-level functions.
Many of these options are described in the documentation for the par() func-
tion.

6.3.1 Graph size

pdf("filename.pdf", width=Xin, height=Yin)

The graph size is specified as an optional argument when starting a graphics
device (e.g., pdf(), Section 6.4.1). Arguments Xin and Yin given in inches for
pdf(), and in pixels for other devices (see the units option in help(jpeg)).

6.3.2 Point and text size
Example: See 4.7.6

plot(x, y, cex=cexval)



178 CHAPTER 6. GRAPHICS

The cex options specified how much the plotting text and symbols should be
magnified relative to the default value of 1 (see help(par) for details on how
to specify this for the axis, labels, and titles, e.g., cex.axis).

6.3.3 Box around plots
Example: See 3.6.4

plot(x, y, bty=btyval)

Control for the box around the plot can be specified using btyval, where if the
argument is one of o (the default), l, 7, c, u, or ], the resulting box resembles
the corresponding character, while a value of n suppresses the box.

6.3.4 Size of margins
Example: See 4.7.4

The margin options control how tight plots are to the printable area.

par(mar=c(bot, left, top, right), # inner margin
oma=c(bot, left, top, right)) # outer margin

The vector given to mar specifies the number of lines of margin around a plot:
the default is c(5, 4, 4, 2) + 0.1. The oma option specifies additional lines
outside the entire plotting area (the default is c(0,0,0,0)). Other options to
control margin spacing include omd and omi.

6.3.5 Graphical settings
Example: See 4.7.4

# change values, while saving old
oldvalues = par(...)

# restore old values for graphical settings
par(oldvalues)

6.3.6 Multiple plots per page
Example: See 4.7.4 and 6.6.4

par(mfrow=c(a, b))

or

par(mfcol=c(a, b))
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The mfrow option specifies that plots will be drawn in an a × b array by row
(by column for mfcol). More complex ways of dividing the graphics device are
available through use of the layout() function (see also split.screen().

6.3.7 Axis range and style
Example: See 4.7.1 and 6.6.1

plot(x, y, xlim=c(minx, maxx), ylim=c(miny, maxy), xaxs="i",
yaxs="i")

The xaxs and yaxs options control whether tick marks extend beyond the
limits of the plotted observations (default) or are constrained to be internal
("i"). More control is available through the axis() and mtext() functions.

6.3.8 Axis labels, values, and tick marks
Example: See 2.13.7

plot(x, y, lab=c(x, y, len), # number of tick marks
las=lasval, # orientation of tick marks
tck=tckval, # length of tick marks
tcl=tclval, # length of tick marks
xaxp=c(x1, x2, n), # coordinates of the extreme tick marks
yaxp=c(x1, x2, n), # coordinates of the extreme tick marks
xlab="X axis label", ylab="Y axis label")

Options for las include 0 for always parallel, 1 for always horizontal, 2 for
perpendicular, and 3 for vertical.

6.3.9 Line styles
Example: See 4.7.4

plot(...)
lines(x, y, lty=ltyval)

Supported line type values include 0=blank, 1=solid (default), 2=dashed, 3=dot-
ted, 4=dotdash, 5=longdash, and 6=twodash.

6.3.10 Line widths
Example: See 2.13.7

plot(...)
lines(x, y, lwd=lwdval)

The default for lwd is 1; the value of lwdval must be positive.
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6.3.11 Colors
Example: See 3.6.4

plot(...)
lines(x, y, col=colval)

For more information on setting colors, see the Color Specification sec-
tion within help(par). The colors() function lists available colors, while
colors.plot() function within the epitools package displays a matrix of col-
ors, and colors.matrix() returns a matrix of color names. Assistance in find-
ing an appropriate color palette is available from the display.brewer.all()
function within the RColorBrewer package.

6.3.12 Log scale

plot(x, y, log=logval)

A natural log scale can be specified using the log option to plot(), where
log="x" denotes only the x axis, "y" only the y axis, and "xy" for both.

6.3.13 Omit axes
Example: See 7.4.1

plot(x, y, xaxt="n", yaxt="n")

6.4 Saving graphs

It is straightforward to export graphics in a variety of formats.

6.4.1 PDF
Example: See 7.4.3

pdf("file.pdf")
plot(...)
dev.off()

The dev.off() function is used to close a graphics device.
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6.4.2 Postscript

postscript("file.ps")
plot(...)
dev.off()

The dev.off() function is used to close a graphics device.

6.4.3 JPEG

jpeg("filename.jpg")
plot(...)
dev.off()

The dev.off() function is used to close a graphics device.

6.4.4 WMF

win.metafile("file.wmf")
plot(...)
dev.off()

The function win.metafile() is only supported under Windows. Functions
which generate multiple plots are not supported. The dev.off() function is
used to close a graphics device.

6.4.5 BMP

bmp("filename.bmp")
plot(...)
dev.off()

The dev.off() function is used to close a graphics device.

6.4.6 TIFF

tiff("filename.tiff")
plot(...)
dev.off()

The dev.off() function is used to close a graphics device.
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6.4.7 PNG

png("filename.png")
plot(...)
dev.off()

The dev.off() function is used to close a graphics device.

6.4.8 Closing a graphic device
Example: See 6.6.6

The dev.off() function closes a graphics window. This is particularly useful
when a graphics file is being created.

dev.off()

6.5 Further resources

The books by Tufte [70, 71, 72, 73] provide an excellent framework for graphical
displays, some of which build on the work of Tukey [74]. Comprehensive and
accessible books on R graphics include the texts by Murrell [45] and Sarkar
[61].

6.6 HELP examples

To help illustrate the tools presented in this chapter, we apply many of the
entries to the HELP data. The code for these examples can be downloaded
from http://www.math.smith.edu/r/examples.

> options(digits=3)

> library(foreign)

> ds = read.dta("http://www.math.smith.edu/r/data/help.dta")

> attach(ds)

6.6.1 Scatterplot with multiple axes

The following example creates a single figure that displays the relationship
between CESD and the variables indtot (Inventory of Drug Use Consequences,
InDUC) and mcs (Mental Component Score), for a subset of female alcohol-
involved subjects. We specify two different y-axes (6.1.2) for the figure.

A nontrivial amount of housekeeping is needed. The second y variable must
be rescaled to the range of the original, and the axis labels and tick marks added
on the right. To accomplish this, we write a function plottwoy() which first

http://www.math.smith.edu/r/data/help.dta
http://www.math.smith.edu/r/examples
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makes the plot of the first (left axis) y against x, adds a lowess curve through
that data, then calls a second function, addsecondy().

> plottwoy = function(x, y1, y2, xname="X", y1name="Y1",

+ y2name="Y2")

+ {

+ plot(x, y1, ylab=y1name, xlab=xname)

+ lines(lowess(x, y1), lwd=3)

+ addsecondy(x, y2, y1, yname=y2name)

+ }

The function addsecondy() does the work of rescaling the range of the second
variable to that of the first, adds the right axis, and plots a lowess curve through
the data for the rescaled y2 variable.

> addsecondy = function(x, y, origy, yname="Y2") {

+ prevlimits = range(origy)

+ axislimits = range(y)

+ axis(side=4, at=prevlimits[1] + diff(prevlimits)*c(0:5)/5,

+ labels=round(axislimits[1] + diff(axislimits)*c(0:5)/5,

+ 1))

+ mtext(yname, side=4)

+ newy = (y-axislimits[1])/

+ (diff(axislimits)/diff(prevlimits)) + prevlimits[1]

+ points(x, newy, pch=2)

+ lines(lowess(x, newy), lty=2, lwd=3)

+ }

Finally, the newly defined functions can be run and Figure 6.1 generated.

> plottwoy(cesd[female==1&substance=="alcohol"],

+ indtot[female==1&substance=="alcohol"],

+ mcs[female==1&substance=="alcohol"], xname="cesd",

+ y1name="InDUC", y2name="mcs")

6.6.2 Bubble plot

Figure 6.2 displays a bubble plot (6.1.3) using circles as the plotting symbol
(6.2.14). Amongst female subjects with alcohol as a primary substance, the cir-
cles are plotted by age and CESD score, with the area of the circles proportional
to the number of drinks.
> femalealc = subset(ds, female==1 & substance=="alcohol")

> with(femalealc, symbols(age, cesd, circles=sqrt(i1),

+ inches=1/5, bg=ifelse(homeless, "lightgray", "white")))
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Figure 6.1: Plot of InDUC and MCS versus CESD for female alcohol-involved
subjects.

The homeless subjects tend to have higher CESD scores than non-homeless
subjects, and the rate of drinking also appears to be positively associated with
CESD scores.

6.6.3 Conditioning plot

Figure 6.3 displays a conditioning plot (6.1.6) with the association between
MCS and CESD stratified by substance and report of suicidal thoughts (g1b).

We need to ensure that the necessary packages are installed (1.7.1) then set
up and generate the plot.

> library(lattice)

> suicidal.thoughts = as.factor(g1b)

> coplot(mcs ~ cesd | suicidal.thoughts*substance,

+ panel=panel.smooth)

There is a similar association between CESD and MCS for each of the substance
groups. Subjects with suicidal thoughts tended to have higher CESD scores,
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Figure 6.2: Distribution of number of drinks (proportional to area of circle), age,
and CESD for female alcohol-involved subjects (homeless subjects are shaded).

and the association between CESD and MCS was somewhat less pronounced
than for those without suicidal thoughts.

6.6.4 Multiple plots

Figure 6.4 displays a graphic built up using multiple plots (6.3.6) with the
layout() function. The association between MCS and CESD is stratified by
gender, with histograms on the margins. The code divides the plotting area
into rows and columns with different widths, then adds each graphic element.

> xhist = hist(mcs, plot=FALSE)

> yhist = hist(cesd, plot=FALSE)

> top = max(c(xhist$counts, yhist$counts))

> nf = layout(matrix(c(1,2,3,4),2,2,byrow=TRUE), widths=c(4,1),

+ heights=c(1,4), TRUE)
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Figure 6.3: Association of MCS and CESD, stratified by substance and report
of suicidal thoughts.

> par(mar=c(0,3,1,1)) # top histogram

> barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)

> par(mar=c(4,4,1,1)) # empty plot

> plot(mcs, cesd, type="n", xlab="", ylab="", xaxt="n", yaxt="n",

+ bty="n")

> par(mar=c(4,4,1,1)) # main scatterplot

> plot(mcs, cesd, xlab="", ylab="",

+ pch=ifelse(female, "F", "M"), cex=.6)

> lines(lowess(mcs[female==1], cesd[female==1]), lwd=2)

> lines(lowess(mcs[female==0], cesd[female==0]), lwd=3, lty=4)

> text(35, max(cesd),"MCS")

> text(max(mcs), 30,"CESD", srt=270)

> legend(min(mcs), 10, legend=c("Female","Male"), lwd=3,

+ lty=c(1,4))

> par(mar=c(3,0,1,1)) # rightside histogram

> barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0,

+ horiz=TRUE)
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There is a similar association between CESD and MCS for men and women,
though women tend to have higher CESD scores.
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Figure 6.4: Association of MCS and CESD, stratified by gender.

6.6.5 Dotplot

There is an association between CESD scores and the SF-36 mental (MCS) and
physical (PCS) scores. These can be displayed using a dotplot (6.1.8), where
the average MCS and PCS score is calculated for each value of CESD score.
To help smooth the display, odd values of CESD scores are combined with the
next lowest even number (e.g., the values of MCS and PCS for CESD scores of
both 0 and 1 are averaged).
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> cesdeven = cesd - cesd %% 2 # map to lowest even number

> pcsvals = tapply(pcs, cesdeven, mean) # calculate averages

> mcsvals = tapply(mcs, cesdeven, mean)

> library(lattice)

> print(dotplot( ~ mcsvals + pcsvals, xlab="MCS/PCS scores",

+ ylab="CESD score", pch=c("M", "P"), cex=1.4, col=c(1,1)))

Figure 6.5 displays the means, with separate plotting characters for MCS and
PCS. There is a stronger association between CESD and MCS than between
CESD and PCS.
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Figure 6.5: Mean MCS and PCS scores by CESD.

6.6.6 Kaplan–Meier plot

The main outcome of the HELP study was time to linkage to primary care, as a
function of randomization group. This can be displayed using a Kaplan–Meier
plot (see 6.1.18). Detailed information regarding the Kaplan–Meier estimator
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at each time point can be found by specifying summary(survobj). Figure 6.6
displays the estimates, with + signs indicating censored observations.

> library(survival)

> survobj = survfit(Surv(dayslink, linkstatus) ~ treat)

> print(survobj)

records n.max n.start events median 0.95LCL 0.95UCL
treat=0 209 209 209 35 NA NA NA
treat=1 222 222 222 128 120 79 272

> plot(survobj, lty=1:2, lwd=2, col=c(4,2), conf.int=TRUE,

+ xlab="days", ylab="P(not linked)")

> title("Product-Limit Survival Estimates")

> legend(230, .75, legend=c("Control", "Treatment"), lty=c(1,2),

+ lwd=2, col=c(4,2), cex=1.4)
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Figure 6.6: Kaplan–Meier estimate of time to linkage to primary care by ran-
domization group.
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As reported previously by Horton et al. and Samet et al. [29, 59], there is
a highly statistically significant effect of treatment, with approximately 55%
of clinic subjects linking to primary care, as opposed to only 15% of control
subjects.

6.6.7 ROC curve

Receiver operating characteristic (ROC) curves are used for diagnostic agree-
ment (3.3.2 and 6.1.17) as well as assessing goodness of fit for logistic regression
(5.1.1). These can be generated using the ROCR library.

Using R, we first create a prediction object, then retrieve the area under
the curve (AUC) to use in Figure 6.7.

Figure 6.7 displays the receiver operating characteristic curve predicting
suicidal thoughts using the CESD measure of depressive symptoms.

> library(ROCR)

> pred = prediction(cesd, g1b)

> auc = slot(performance(pred, "auc"), "y.values")[[1]]

We can then plot the ROC curve, adding display of cutoffs for particular CESD
values ranging from 20 to 50. These values are offset from the ROC curve using
the text.adj option.

If the continuous variable (in this case cesd) is replaced by the predicted
probability from a logistic regression model, multiple predictors can be included.

> plot(performance(pred, "tpr", "fpr"),

+ print.cutoffs.at=seq(from=20, to=50, by=5),

+ text.adj=c(1, -.5), lwd=2)

> lines(c(0, 1), c(0, 1))

> text(.6, .2, paste("AUC=", round(auc,3), sep=""), cex=1.4)

> title("ROC Curve for Model")

6.6.8 Pairs plot

We can qualitatively assess the associations between some of the continuous
measures of mental health, physical health, and alcohol consumption using a
pairsplot or scatterplot matrix (6.1.5). To make the results clearer, we display
only the female subjects.

A simple version with only the scatterplots could be generated easily with
the pairs() function (results not shown):

> pairs(c(ds[72:74], ds[67]))

or

> pairs(ds[c("pcs", "mcs", "cesd", "i1")])
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Figure 6.7: Receiver operating characteristic curve for the logistical regression
model predicting suicidal thoughts using the CESD as a measure of depressive
symptoms (sensitivity = true positive rate; 1-specificity = false positive rate).

Here instead we demonstrate building a figure using several functions. We begin
with a function panel.hist() to display the diagonal entries (in this case, by
displaying a histogram).

> panel.hist = function(x, ...)

+ {

+ usr = par("usr"); on.exit(par(usr))

+ par(usr = c(usr[1:2], 0, 1.5) )

+ h = hist(x, plot=FALSE)

+ breaks = h$breaks; nB = length(breaks)

+ y = h$counts; y = y/max(y)

+ rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)

+ }

Another function is created to create a scatterplot along with a fitted line.
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> panel.lm = function(x, y, col=par("col"), bg=NA,

+ pch=par("pch"), cex=1, col.lm="red", ...)

+ {

+ points(x, y, pch=pch, col=col, bg=bg, cex=cex)

+ ok = is.finite(x) & is.finite(y)

+ if (any(ok))

+ abline(lm(y[ok] ~ x[ok]))

+ }

The panel.lm() function uses indexing (1.5.2) to prune infinite values, and
then add a line (6.2.4) based on this subset. These functions are called (along
with the built-in panel.smooth() function) to display the results. Figure 6.8
displays the pairsplot of CESD, MCS, PCS, and I1, with histograms along the
diagonals. Smoothing splines are fit on the lower triangle, linear fits on the
upper triangle, using code fragments derived from example(pairs).

> pairs(~ cesd + mcs + pcs + i1, subset=(female==1),

+ lower.panel=panel.smooth, diag.panel=panel.hist,

+ upper.panel=panel.lm)

There is an indication that CESD, MCS, and PCS are interrelated, while I1 appears
to have modest associations with the other variables.

6.6.9 Visualize correlation matrix

One visual analysis which might be helpful to display would be the pairwise
correlations for a set of variables. We utilize the approach used by Sarkar
to recreate Figure 13.5 of the Lattice: Multivariate data visualization with R
book [61]. Other examples in that reference help to motivate the power of the
lattice package far beyond what is provided by demo(lattice).

> cormat = cor(cbind(mcs, pcs, pss_fr, drugrisk, cesd, indtot,

+ i1, sexrisk), use="pairwise.complete.obs")

> oldopt = options(digits=1)
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Figure 6.8: Pairsplot of variables from the HELP dataset.

> cormat

mcs pcs pss_fr drugrisk cesd indtot i1 sexrisk
mcs 1.00 0.11 0.14 -0.206 -0.68 -0.4 -0.09 -0.106
pcs 0.11 1.00 0.08 -0.141 -0.29 -0.1 -0.20 0.024
pss_fr 0.14 0.08 1.00 -0.039 -0.18 -0.2 -0.07 -0.113
drugrisk -0.21 -0.14 -0.04 1.000 0.18 0.2 -0.10 -0.006
cesd -0.68 -0.29 -0.18 0.179 1.00 0.3 0.18 0.016
indtot -0.38 -0.13 -0.20 0.181 0.34 1.0 0.20 0.113
i1 -0.09 -0.20 -0.07 -0.100 0.18 0.2 1.00 0.088
sexrisk -0.11 0.02 -0.11 -0.006 0.02 0.1 0.09 1.000

> options(oldopt) # return options to previous setting
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> drugrisk[is.na(drugrisk)] = 0

> panel.corrgram = function(x, y, z, at, level=0.9,

+ label=FALSE, ...)

+ {

+ require("ellipse", quietly=TRUE)

+ zcol = level.colors(z, at=at, col.regions=gray.colors)

+ for (i in seq(along=z)) {

+ ell = ellipse(z[i], level=level, npoints=50,

+ scale=c(.2, .2), centre=c(x[i], y[i]))

+ panel.polygon(ell, col=zcol[i], border=zcol[i], ...)

+ }

+ if (label)

+ panel.text(x=x, y=y, lab=100*round(z, 2), cex=0.8,

+ col=ifelse(z < 0, "white", "black"))

+ }

The panel.corrgram() function uses the ellipse package to display the corre-
lations, with depth of shading proportional to the magnitude of the correlation.
Negative associations are marked using a white font, while positive associations
are displayed using a black font.

> library(ellipse)

> library(lattice)

> print(levelplot(cormat, at=do.breaks(c(-1.01, 1.01), 20),

+ xlab=NULL, ylab=NULL, colorkey=list(space = "top",

+ col=gray.colors), scales=list(x=list(rot = 90)),

+ panel=panel.corrgram,

+ label=TRUE))

Figure 6.9 displays the results, including a color key at the top of the graph.
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Chapter 7

Advanced applications

In this chapter, we address several additional topics that show off the statistical
computing strengths and potential of R, as well as illustrate many of the entries
in the earlier chapters.

7.1 Power and sample size calculations

Many simple settings lend themselves to analytic power calculations, where
closed-form solutions are available. Other situations may require an empirical
calculation, where repeated simulation is undertaken. In addition to the ex-
amples in this section other power routines are available in library(pwr) and
library(Hmisc).

7.1.1 Analytic power calculation

It is straightforward to find power (for a given sample size) or sample size (given
a desired power) for two-sample comparisons of either continuous or categorical
outcomes. We show simple examples for comparing means and proportions in
two groups.
# find sample size for two-sample t-test
power.t.test(delta=0.5, power=0.9)

# find power for two-sample t-test
power.t.test(delta=0.5, n=100)

The latter call generates the following output.

197
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Two-sample t test power calculation
n = 100

delta = 0.5
sd = 1

sig.level = 0.05
power = 0.9404272

alternative = two.sided
NOTE: n is number in *each* group

# find sample size for two-sample test of proportions
power.prop.test(p1=.1, p2=.2, power=.9)

# find power for two-sample test of proportions
power.prop.test(p1=.1, p2=.2, n=100)

The power.t.test() function requires exactly four of the five arguments (sam-
ple size in each group, power, difference between groups, standard deviation,
and significance level) to be specified. Default values are set to sig.level=0.05
and sd=1.

7.1.2 Simulation-based power calculations

In some settings, analytic power calculations may not be readily available. A
straightforward alternative is to estimate power empirically, simulating data
from the proposed design under various alternatives.

We consider a study of children clustered within families. Each family has
3 children; in some families all 3 children have an exposure of interest, while in
others just 1 child is exposed. In the simulation, we assume that the outcome
is multivariate normal with higher mean for those with the exposure, and 0
for those without. A compound symmetry correlation is assumed, with equal
variances at all times. We assess the power to detect an exposure effect where
the intended analysis uses a random intercept model (5.2.2) to account for the
clustering within families.

With this simple covariance structure it is trivial to generate correlated
errors. We specify the correlation matrix directly, and simulate from a multi-
variate normal distribution.
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library(MASS)
library(nlme)

# initialize parameters and building blocks

# effect size
effect = 0.35

# intrafamilial correlation
corr = 0.4
numsim = 1000

# families with 3 exposed
n1fam = 50

# families with 1 exposed and 2 unexposed
n2fam = 50

# 3x3 compound symmetry correlation
vmat = matrix(c

(1, corr, corr,
corr, 1 , corr,
corr, corr, 1 ), 3, 3)

# create exposure status for all sets of families
# 1 1 1 ... 1 0 0 0 ... 0
x = c(rep(1, n1fam), rep(1, n1fam), rep(1, n1fam),

rep(1, n2fam), rep(0, n2fam), rep(0, n2fam))

# create identifiers for families
# 1 2 ... n1fam 1 2 ... n1fam ...
id = c(1:n1fam, 1:n1fam, 1:n1fam,

(n1fam+1:n2fam), (n1fam+1:n2fam), (n1fam+1:n2fam))

# initialize vector for results
power = numeric(numsim)

The concatenate function (c(), Section 1.5.1) is used to glue together the ap-
propriate elements of the design matrices and underlying correlation structure.
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for (i in 1:numsim) {
cat(i," ")
# all three exposed
grp1 = mvrnorm(n1fam, c(effect, effect, effect), vmat)

# only first exposed
grp2 = mvrnorm(n2fam, c(effect, 0, 0), vmat)

# concatenate the outcome vector
y = c(grp1[,1], grp1[,2], grp1[,3],

grp2[,1], grp2[,2], grp2[,3])

# specify dependence structure
group = groupedData(y ~ x | id)
# fit random intercept model
res = lme(group, random = ~ 1)
# grab results for main parameter
pval = summary(res)$tTable[2,5]
# is it statistically significant?
power[i] = pval<=0.05

}
cat("\nEmpirical power for effect size of ", effect,

" is ", round(sum(power)/numsim,3), ".\n", sep="")
cat("95% confidence interval is",

round(prop.test(sum(power), numsim)$conf.int, 3), "\n")

These assumptions yield the following estimate of power.
Empirical power for effect size of 0.35 is 0.855.
95% confidence interval is 0.831 0.876

7.2 Simulations and data generation

7.2.1 Simulate data from a logistic regression

As our first example of data generation, we simulate data from a logistic re-
gression (5.1.1). Our process is to generate the linear predictor, then apply the
inverse link, and finally draw from a distribution with this parameter. This
approach is useful in that it can easily be applied to other generalized linear
models (5.1). Here we assume an intercept of 0, a slope of 0.5, and generate
5,000 observations.
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intercept = 0
beta = 0.5
n = 5000
xtest = rnorm(n, 1, 1)
linpred = intercept + (xtest * beta)
prob = exp(linpred)/(1 + exp(linpred))
ytest = ifelse(runif(n) < prob, 1, 0)

We can display estimated values of the coefficients (4.5.1) from the logistic
regression model.

> coef(glm(ytest ~ xtest, binomial))
(Intercept) xtest

0.019 0.506

7.2.2 Simulate data from generalized linear mixed model

In this example, we generate clustered data with a dichotomous outcome, for
input to a generalized linear mixed model (5.2.6). In the code below, for 3000
clusters (denoted by id) there is a cluster invariant predictor (X1), 3 observa-
tions within each cluster (denoted by X2) and a linear effect of order within
cluster, and an additional predictor which varies between clusters (X3). The
dichotomous outcome Y is generated from these predictors using a logistic link
incorporating a random intercept for each cluster.

library(lme4)
n = 3000; p = 3; sigbsq = 4
beta = c(-2, 1.5, 0.5, -1)
id = rep(1:n, each=p) # 1 1 ... 1 2 2 ... 2 ... n
x1 = as.numeric(id < (n+1)/2) # 1 1 ... 1 0 0 ... 0
randint = rep(rnorm(n, 0, sqrt(sigbsq)), each=p)
x2 = rep(1:p, n) # 1 2 ... p 1 2 ... p ...
x3 = runif(p*n)
linpred = beta[1] + beta[2]*x1 + beta[3]*x2 + beta[4]*x3 +

randint
expit = exp(linpred)/(1 + exp(linpred))
y = runif(p*n) < expit

glmmres = lmer(y ~ x1 + x2 + x3 + (1|id),
family=binomial(link="logit"))

This generates the following output.
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> summary(glmmres)
Generalized linear mixed model fit by the Laplace approximation
Formula: y ~ x1 + x2 + x3 + (1 | id)

AIC BIC logLik deviance
10637 10672 -5313 10627
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 3.05 1.75
Number of obs: 9000, groups: id, 3000

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.8614 0.1021 -18.2 <2e-16
x1 1.3827 0.0838 16.5 <2e-16
x2 0.4903 0.0323 15.2 <2e-16
x3 -1.0338 0.1014 -10.2 <2e-16
---
Correlation of Fixed Effects:

(Intr) x1 x2
x1 -0.452
x2 -0.651 0.047
x3 -0.443 -0.024 -0.041

7.2.3 Generate correlated binary data

Correlated dichotomous outcomes Y1 and Y2 with a desired association and
success probability can be generated by finding the probabilities corresponding
to the 2×2 table as a function of the marginal expectations and correlation using
the methods of Lipsitz and colleagues [41]. Here we generate a sample of 1,000
values, where: P (Y1 = 1) = 0.15, P (Y2 = 1) = 0.25 and Corr(Y1, Y2) = 0.40.
p1 = 0.15; p2 = 0.25; corr = 0.4; n = 10000
p1p2 = corr*sqrt(p1*(1-p1)*p2*(1-p2)) + p1*p2
vals = sample(1:4, n, replace=TRUE,

prob=c(1-p1-p2+p1p2, p1-p1p2, p2-p1p2, p1p2))
y1 = numeric(n); y2 = y1 # create output vectors
y1[vals==2 | vals==4] = 1 # and replace them with ones
y2[vals==3 | vals==4] = 1 # where needed
rm(vals, p1, p2, p1p2, corr, n) # cleanup

The generated data is similar to the expected values.
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> cor(y1, y2)
[1] 0.392
> mean(y1)
[1] 0.151
> mean(y2)
[1] 0.248

7.2.4 Simulate data from a Cox model

To simulate data from a Cox proportional hazards model (5.3.1), we need to
model the hazard functions for both time to event and time to censoring. In
this example, we use a constant baseline hazard, but this can be modified by
specifying other scale parameters for the Weibull random variables.

library(survival)
n = 10000
beta1 = 2; beta2 = -1
lambdaT = .002 # baseline hazard
lambdaC = .004 # hazard of censoring

# generate data from Cox model
x1 = rnorm(n,0)
x2 = rnorm(n,0)
# true event time
T = rweibull(n, shape=1, scale=lambdaT*exp(-beta1*x1-beta2*x2))
C = rweibull(n, shape=1, scale=lambdaC) #censoring time
time = pmin(T,C) #observed time is min of censored and true
event = time==T # set to 1 if event is observed

# fit Cox model
survobj = coxph(Surv(time, event)~ x1 + x2, method="breslow")

This generates data where approximately 40% of the observations are censored.
The results are similar to the true parameter values.
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> table(event)
event
FALSE TRUE
4083 5917
> print(survobj)
Call:
coxph(formula = Surv(time, event) ~ x1 + x2, method = "breslow")

coef exp(coef) se(coef) z p
x1 2.02 7.556 0.0224 90.1 0
x2 -1.02 0.362 0.0159 -63.7 0

Likelihood ratio test=11692 on 2 df, p=0 n= 10000
> confint(survobj)

2.5 % 97.5 %
x1 1.978 2.066
x2 -1.047 -0.985

7.3 Data management and related tasks

7.3.1 Finding two closest values in a vector

Suppose we need to find the closest pair of observations for some variable.
This might arise if we were concerned that some data had been accidentally
duplicated. In this case study, we return the ID’s of the two closest observations,
and their distance from each other. We will first create some sample data and
sort it, recognizing that the smallest difference must come between two adjacent
observations, once they are sorted.

We begin by generating data (2.10.6), along with some subject identifiers
(2.4.19). The order() function (Section 2.5.6) is used to keep track of the
sorted random variables. The ID of the smaller of the two observations with
the smallest distance is the value in the id vector in the place where x equals
the value of the sorted vector that is in the same place as the smallest differ-
ence. The larger ID can be found the same way, using the shifted vector. The
which.min()

id = 1:10
x = rnorm(10)
sortx = x[order(x)]
oneless = sortx[2:length(x)]
diff = oneless - sortx[1:length(x)-1]
smallid = id[x == sortx[which.min(diff)]]
largeid = id[x == oneless[which.min(diff)]]
smalldist = min(diff)
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To help clarify this process, a number of relevant intermediate quantities are
displayed below.
> x
[1] 1.412 -0.518 1.298 0.351 2.123 -1.388
[7] 0.431 1.268 0.658 -0.014
> sortx
[1] -1.388 -0.518 -0.014 0.351 0.431 0.658
[7] 1.268 1.298 1.412 2.123
> oneless
[1] -0.518 -0.014 0.351 0.431 0.658 1.268
[8] 1.298 1.412 2.123
> diff
[1] 0.87 0.50 0.36 0.08 0.23 0.61 0.03 0.11 0.71
> smallid
[1] 8
> largeid
[1] 3
> smalldist
[1] 0.03

7.3.2 Calculate and plot a running average

The “Law of Large Numbers” concerns the convergence of the arithmetic av-
erage to the expected value, as sample sizes increase. This is an important
topic in mathematical statistics. The convergence (or lack thereof, for certain
distributions) can easily be visualized [25]. Assume that X1, X2, ..., Xn are in-
dependent and identically distributed realizations from some distribution with
mean µ. We denote the average of the first k observations as X̄(k).

We define a function (1.6.2) to calculate the running average for a given
vector, allowing for variates from many distributions to be generated.

runave = function(n, gendist, ...) {
x = gendist(n, ...)
avex = numeric(n)
for (k in 1:n) {

avex[k] = mean(x[1:k])
}
return(data.frame(x, avex))

}

The runave() function takes at a minimum two arguments: a sample size n
and function (1.6) denoted by gendist that is used to generate samples from a
distribution (2.1). In addition, other options for the function can be specified,
using the ... syntax (see 1.6). This is used to specify the degrees of freedom
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for the samples generated for the t distribution in the next code block. The
loop in the runave() function could be eliminated through use of the cumsum()
function applied to the vector given as argument, and then divided by a vector
of observation numbers.

Next, we generate the data, using our new function. To make sure we have
a nice example, we first set a fixed seed (2.10.11). Recall that because the
expectation of a Cauchy random variable is undefined [53] the sample average
does not converge to the center, while a t distribution with more than 1 df does.
vals = 1000
set.seed(1984)
cauchy = runave(vals, rcauchy)
t4 = runave(vals, rt, 4)

We now plot the results, beginning with an empty plot with the correct axis
limits, using the type="n" specification (6.1.1). We add the running average
using the lines function (6.2.4) and varying the line style (6.3.9) and thickness
(6.3.10) with the lty and lwd specifications, respectively. Finally we specify a
title (6.2.10) and a legend (6.2.15). The results are displayed in Figure 7.1.

plot(c(cauchy$avex, t4$avex), xlim=c(1, vals), type="n")
lines(1:vals, cauchy$avex, lty=1, lwd=2)
lines(1:vals, t4$avex, lty=2, lwd=2)
abline(0, 0)
title("Running average of two distributions")
legend(vals*.6, -1, legend=c("Cauchy", "t with 4 df"),

lwd=2, lty=c(1,2))

7.3.3 Tabulate binomial probabilities

Suppose we wanted to assess the probability P (X = x) for a binomial random
variate with parameters n = 10 and p ranging from 0.81, 0.84, . . . , 0.99. This
could be helpful, for example, in various game settings or for teaching purposes.

We address this problem by making a vector of the binomial probabilities,
using the : operator (2.4.19) to generate a sequence of integers. After creating
a matrix (2.9) to hold the table results, we loop (2.11.1) through the binomial
probabilities, calling the dbinom() function (2.10.2) to find the probability that
the random variable takes on that particular value. This calculation is nested
within the round() function (2.8.4) to reduce the digits displayed. Finally, we
glue the vector of binomial probabilities to the results using cbind().
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Figure 7.1: Running average for Cauchy and t distributions.

p = .78 + (3 * 1:7)/100 # .81 to .99
allprobs = matrix(nrow=length(p), ncol=11)
for (i in 1:length(p)) {

allprobs[i,] = round(dbinom(0:10, 10, p[i]),2)
}
table = cbind(p, allprobs)

This generates the following results.
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> table
p

[1,] 0.81 0 0 0 0 0 0.02 0.08 0.19 0.30 0.29 0.12
[2,] 0.84 0 0 0 0 0 0.01 0.05 0.15 0.29 0.33 0.17
[3,] 0.87 0 0 0 0 0 0.00 0.03 0.10 0.25 0.37 0.25
[4,] 0.90 0 0 0 0 0 0.00 0.01 0.06 0.19 0.39 0.35
[5,] 0.93 0 0 0 0 0 0.00 0.00 0.02 0.12 0.36 0.48
[6,] 0.96 0 0 0 0 0 0.00 0.00 0.01 0.05 0.28 0.66
[7,] 0.99 0 0 0 0 0 0.00 0.00 0.00 0.00 0.09 0.90

7.3.4 Sampling from a pathological distribution

Evans and Rosenthal [12] consider ways to sample from a distribution with
density given by:

f(y) = c exp(−y4)(1 + |y|)3,

where c is a normalizing constant and y is defined on the whole real line. Use
of the probability integral transform (Section 2.10.10) is not feasible in this
setting, given the complexity of inverting the cumulative density function.

We can find the normalizing constant c using symbolic mathematics software
(e.g., Wolfram Alpha, searching for int(exp(-y^4)(1+y)^3, y=0..infinity)).
This yielded a result of 1

4 + 3
√
π

4 + Γ(5/4) + Γ(7/4) for the integral over the
positive real line, which when doubled gives a value of c = 6.809610784.

> options(digits=10)
> 2*(1/4 + 3*sqrt(pi)/4 + gamma(5/4) + gamma(7/4))
[1] 6.809610784

The Metropolis–Hastings algorithm is a Markov Chain Monte Carlo (MCMC)
method for obtaining samples from a probability distribution. The premise for
this algorithm is that it chooses proposal probabilities so that after the process
has converged we are generating draws from the desired distribution. A fur-
ther discussion can be found in Section 11.3 of Probability and Statistics: The
Science of Uncertainty [12] or in Section 1.9 of Gelman et al. [21].

We find the acceptance probability α(x, y) in terms of two densities, f(y)
and q(x, y) (a proposal density, in our example, normal with specified mean
and unit variance) so that

α(x, y) = min
{

1,
cf(y)q(y, x)
cf(x)q(x, y)

}
= min

{
1,
c exp (−y4)(1 + |y|)3(2π)−1/2 exp (−(y − x)2/2)
c exp (−x4)(1 + |x|)3(2π)−1/2 exp (−(x− y)2/2)

}
= min

{
1,

exp (−y4 + x4)(1 + |y|)3

(1 + |x|)3

}
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Begin by picking an arbitrary value for X1. The Metropolis–Hastings algorithm
proceeds by computing the value Xn+1 as follows:
1. Generate y from a Normal(Xn, 1).
2. Compute α(x, y) as above.
3. With probability α(x, y), let Xn+1 = y (use proposal value). Otherwise,
with probability 1− α(x, y), let Xn+1 = Xn = x (keep previous value).

The code uses the first 50,000 iterations as a burn-in period, then generates
100,000 samples using this procedure (saving every 20th sample to reduce auto-
correlation).

alphafun = function(x, y) {
return(exp(-y^4+x^4)*(1+abs(y))^3*

(1+abs(x))^-3)
}

numvals = 100000; burnin = 50000
i = 1
xn = rnorm(1) # arbitrary value to start
for (i in 1:burnin) {

propy = rnorm(1, xn, 1)
alpha = min(1, alphafun(xn, propy))
xn = sample(c(propy, xn), 1, prob=c(alpha,1-alpha))

}
i = 1
res = numeric(numvals)
while (i <= numvals*20) {

propy = rnorm(1, xn, 1)
alpha = min(1, alphafun(xn, propy))
xn = sample(c(propy, xn), 1, prob=c(alpha,1-alpha))
if (i%%20==0) res[i/20] = xn
i = i + 1

}

The results are displayed in Figure 7.2, with the dashed line indicating the true
distribution, and solid the simulated variates. While the normalizing constant
drops out of the algorithm above, it is needed for the plotting done by the
curve() function.
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Figure 7.2: Plot of true and simulated distributions.

pdfeval = function(x) {
return(1/6.809610784*exp(-x^4)*(1+abs(x))^3)

}
curve(pdfeval, from=-2, to=2, lwd=2, lty=2, type="l",

ylab="probability", xlab="Y")
lines(density(res), lwd=2, lty=1)
legend(-1, .1, legend=c("True", "Simulated"),

lty=2:1, lwd=2, cex=1.8, bty="n")

Care is always needed when using MCMC methods. This example was partic-
ularly well-behaved, in that the proposal distribution is large compared to the
distance between the two modes. Section 6.2 of Lavine [36] and Gelman et al.
[21] provides an accessible discussion of these and other issues.
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7.4 Read geocoded data and draw maps

7.4.1 Read variable format files and plot maps

Sometimes datasets are stored in variable format. For example, U.S. Census
boundary files (available from http://www.census.gov/geo/www/cob/index.
html) are available in both proprietary and ASCII formats. An example ASCII
file describing the counties of Massachusetts is available on the book Web site.
The first few lines are reproduced here.

1 -0.709816806854972E+02 0.427749187746914E+02
-0.709148990000000E+02 0.428865890000000E+02
-0.709148860000000E+02 0.428865640000000E+02
-0.709148860000000E+02 0.428865640000000E+02
-0.709027680000000E+02 0.428865300000000E+02
-0.708861360000000E+02 0.428826100000000E+02
-0.708837340828846E+02 0.428812223551543E+02

...
-0.709148990000000E+02 0.428865890000000E+02

END

The first line contains an identifier for the county (linked with a county name
in an additional file) and a latitude and longitude centroid within the polygon
representing the county defined by the remaining points. The remaining points
on the boundary do not contain the identifier. After the lines with the points, a
line containing the word “END” is included. In addition, the county boundaries
contain different numbers of points.

7.4.2 Read input files

Reading this kind of data requires some care in programming. We begin by
reading in all of the input lines, keeping track of how many counties have been
observed (based on how many lines include END). This information is needed
for housekeeping purposes when collecting map points for each county.
# read in the data
openurl = url("http://www.math.smith.edu/r/data/co25_d00.dat")
input = readLines(openurl)
# figure out how many counties, and how many entries
num = length(grep("END", input))
allvals = length(input)
numentries = allvals-num
# create vectors to store data
county = numeric(numentries); lat = numeric(numentries)
long = numeric(numentries)

http://www.math.smith.edu/r/data/co25_d00.dat
http://www.census.gov/geo/www/cob/index.html
http://www.census.gov/geo/www/cob/index.html
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curval = 0 # number of counties seen so far
# loop through each line
for (i in 1:allvals) {

if (input[i]=="END") {
curval = curval + 1

} else {
# remove extraneous spaces
nospace = gsub("[ ]+", " ", input[i])
# remove space in first column
nospace = gsub("^ ", "", nospace)
splitstring = as.numeric(strsplit(nospace, " ")[[1]])
len = length(splitstring)
if (len==3) { # new county

curcounty = splitstring[1]
county[i-curval] = curcounty
lat[i-curval] = splitstring[2]
long[i-curval] = splitstring[3]

} else if (len==2) { # continue current county
county[i-curval] = curcounty
lat[i-curval] = splitstring[1]
long[i-curval] = splitstring[2]

}
}

}

Each line of the input file is processed in turn. The strsplit() function is
used to parse the input file. Lines containing END require incrementing the
count of counties seen to date. If the line indicates the start of a new county,
the new county number is saved. If the line contains 2 fields (another set of
latitudes and longitudes), then this information is stored in the appropriate
index (i-curval) of the output vectors.

Next we read in a dataset of county names. Later we will plot the Mas-
sachusetts counties, and annotate the plot with the names of the counties.
# read county names
countynames =

read.table("http://www.math.smith.edu/r/data/co25_d00a.dat",
header=FALSE)

names(countynames) = c("county", "countyname")

7.4.3 Plotting maps

To create the map, we begin by determining the plotting region, creating the
plot of boundaries, then adding the county names at the internal point that
was provided.

http://www.math.smith.edu/r/data/co25_d00a.dat
http://www.math.smith.edu/r/data/co25_d00a.dat%20,header=false
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xvals = c(min(lat), max(lat))
yvals = c(range(long))
pdf("massachusettsmap.pdf")
plot(xvals, yvals, pch=" ", xlab="", ylab="", xaxt="n", yaxt="n")
counties = unique(county)
for (i in 1:length(counties)) {

# first element is an internal point
polygon(lat[county==counties[i]][-1],

long[county==counties[i]][-1])
# plot name of county using internal point
text(lat[county==counties[i]][1],

long[county==counties[i]][1], countynames$countyname[i])
}
dev.off()

Since the first set of points is in the interior of the county, these are not included
in the values given to the polygon function (see indexing, Section 1.5.2).

The pdf() function is used to create an external graphics file (see 6.4.1,
creating PDF files). When all plotting commands are complete, the dev.off()
function (6.4.1) is used to close the graphics device. We display the results in
Figure 7.3.
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Figure 7.3: Massachusetts counties.

Many other mapping tools that support multiple projections are available
in the maps package (see also the CRAN Spatial Statistics Task View).
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7.5 Data scraping and visualization

In addition to the analytic capabilities available within R, the language has the
capability of text processing. In the next sections, we automate data harvesting
from the Web, by “scraping” a URL, then reading a datafile with two lines
per observation, and plotting the results as time series data. The data being
harvested and displayed are the sales ranks from Amazon for the Manga Guide
to Statistics [68].

7.5.1 Scraping data from HTML files

We can find the Amazon Bestsellers Rank for a book by downloading the desired
Web page and ferreting out the appropriate line. This code is highly sensitive
to changes in Amazon’s page format is changed (but it worked as of January,
2010). The code relies heavily on Section 2.1.4 (reading more complex data
files) as well as Section 2.4.9 (replacing strings). To help in comprehending the
code, readers are encouraged to run the commands on a line-by-line basis, then
look at the resulting value.
# grab contents of web page
urlcontents = readLines("http://tinyurl.com/statsmanga")
# find line with bestsellers rank
linenum = suppressWarnings(grep("Amazon Bestsellers Rank:",

urlcontents))
# split line into multiple elements
linevals = strsplit(urlcontents[linenum], ' ')[[1]]
# find element with bestsellers rank number
entry = grep("#", linevals)
# snag that entry
charrank = linevals[entry]
# kill '#' at start
charrank = substr(charrank, 2, nchar(charrank))
charrank = gsub(',','', charrank) # remove commas
# turn it into a numeric object
bestsellersrank = as.numeric(charrank)
cat("bestsellersrank=",bestsellersrank,"\n")

7.5.2 Reading data with two lines per observation

The code from the previous entry was run regularly on a server by calling R
in batch mode (see 1.2.2), with entries stored in a file. While a date-stamp
was added when this was called, unfortunately it was included in the output on
a different line. The file (accessible at http://www.math.smith.edu/r/data/
manga.txt) has the following form.

http://www.math.smith.edu/r/data/manga.txt
http://www.math.smith.edu/r/data/manga.txt
http://tinyurl.com/statsmanga
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Thu Dec 31 03:40:03 EST 2009
salesrank= 30531
Thu Dec 31 04:00:03 EST 2009
salesrank= 31181

We begin by reading the file, then calculate the number of entries by di-
viding the file’s length by two. Next, two empty vectors of the correct length
and type are created to store the data. Once this preparatory work is com-
pleted, we loop (2.11.1) through the file, reading in the odd-numbered lines
as date/time values from the Eastern U.S. time zone, with daylight savings
applied. The gsub() function (2.4.9) replaces matches determined by regu-
lar expression matching. In this situation, it is used to remove the time zone
from the line before this processing. These date/time values are read into
the timeval vector. Even-numbered lines are read into the rank vector, after
removing the strings salesrank= and NA (again using two calls to gsub()).
Finally, we make a data frame (1.5.6) from the two vectors and display the first
few lines using the head() function (2.2.7).

file = readLines("manga.txt")
n = length(file)/2
rank = numeric(n)
timeval = as.POSIXlt(rank, origin="1960-01-01")
for (i in 1:n) {

timeval[i] = as.POSIXlt(gsub('EST', '',
gsub('EDT', '', file[(i-1)*2+1])),
tz="EST5EDT", format="%a %b %d %H:%M:%S %Y")

rank[i] = as.numeric(gsub('NA', '',
gsub('salesrank= ','', file[i*2])))

}
timerank = data.frame(timeval, rank)

The first 7 entries of the file are given below.

> head(timerank, 7)
timeval rank

1 2009-12-30 07:14:27 18644
2 2009-12-30 07:20:03 18644
3 2009-12-30 07:40:03 18644
4 2009-12-30 08:00:03 18906
5 2009-12-30 08:20:02 18906
6 2009-12-30 08:40:03 18906
7 2009-12-30 09:00:04 13126
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7.5.3 Plotting time series data

While it is straightforward to plot these data using the plot() command (6.1.1),
we can augment the display by indicating whether the rank was recorded in
nighttime (Eastern U.S. time) or not. Then we will color (6.3.11) the nighttime
ranks differently than the daytime ranks.

We begin by creating a new variable reflecting the date-time at the midnight
before we started collecting data. We then coerce the time values to numeric
values using the as.numeric() function (2.4.2) while subtracting that midnight
value. Next, we mod by 24 (using the %% operator, Section 1.5.3) and lastly
round to the integer value (2.8.4) to get the hour of measurement.

midnight = as.POSIXlt("2009-12-30 00:00:00 EST")
timeofday = round(as.numeric(timeval-midnight)%%24,0)
night = rep(0,length(timeofday)) # vector of zeroes
night[timeofday < 8 | timeofday > 18] = 1
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Figure 7.4: Plot of sales rank over time.
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plot(timeval, rank, type="n")
points(timeval[night==1], rank[night==1], pch=20, col="black")
points(timeval[night==0], rank[night==0], pch=17, col="red")
legend(as.POSIXlt("2010-01-07 00:00:00 EST"), 25000,

legend=c("day","night"), col=c("red","black"), pch=c(17,20))
abline(v=as.numeric(as.POSIXlt("2010-01-01 00:00:00 EST")))

The results are displayed in Figure 7.4, with a line denoting the start of the
New Year. The sales rank gradually increases in a steady manner most of the
time, then drops considerably when there is a sale.

7.6 Account for missing data using multiple
imputation

Missing data is ubiquitous in most real-world investigations. Here we demon-
strate some of the capabilities for fitting incomplete data regression models us-
ing multiple imputation [56, 63, 27] implemented with chained equation models
[75, 50].

In this example we replicate an analysis from Section 5.7.1 in a version of
the HELP dataset that includes missing values for several of the predictors.
While not part of the regression model of interest, the mcs and pcs variables
are included in the imputation models, which may make the missing at random
assumption more plausible [6].

We begin by reading in the data then using the na.pattern() function
from the Hmisc library to characterize the patterns of missing values within
the dataframe.

> ds = read.csv("http://www.math.smith.edu/r/data/helpmiss.csv")
> smallds = with(ds, data.frame(homeless, female, i1, sexrisk,

indtot, mcs, pcs))

http://www.math.smith.edu/r/data/helpmiss.csv
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> summary(smallds)
homeless female i1 sexrisk

Min. :0.000 Min. :0.000 Min. : 0.0 Min. : 0.00
1st Qu.:0.000 1st Qu.:0.000 1st Qu.: 3.0 1st Qu.: 3.00
Median :0.000 Median :0.000 Median : 13.0 Median : 4.00
Mean :0.466 Mean :0.236 Mean : 18.3 Mean : 4.64
3rd Qu.:1.000 3rd Qu.:0.000 3rd Qu.: 26.0 3rd Qu.: 6.00
Max. :1.000 Max. :1.000 Max. :142.0 Max. :14.00

NA's : 1.00
indtot mcs pcs

Min. : 4.0 Min. : 6.76 Min. :14.1
1st Qu.:32.0 1st Qu.:21.66 1st Qu.:40.3
Median :37.5 Median :28.56 Median :48.9
Mean :35.7 Mean :31.55 Mean :48.1
3rd Qu.:41.0 3rd Qu.:40.64 3rd Qu.:57.0
Max. :45.0 Max. :62.18 Max. :74.8
NA's :14.0 NA's : 2.00 NA's : 2.0

> library(Hmisc)
> na.pattern(smallds)
pattern
0000000 0000011 0000100 0001100

454 2 13 1

There are 14 subjects missing indtot, 2 missing mcs and pcs, and 1 missing
sexrisk. In terms of patterns of missingness, there are 454 observations with
complete data, 2 missing both mcs and pcs, 13 missing indtot alone, and 1
missing sexrisk and indtot. Fitting a logistic regression model (5.1.1) using
the available data (n=456) yields the following results.

> glm(homeless ~ female + i1 + sexrisk + indtot, binomial,
data=smallds)

Call: glm(formula = homeless ~ female + i1 + sexrisk + indtot,
family = binomial, data = smallds)

Coefficients:
(Intercept) female i1 sexrisk indtot

-2.5278 -0.2401 0.0232 0.0562 0.0493

(14 observations deleted due to missingness)

Next, the mice() function within the mice library is used to impute missing
values for sexrisk, indtot, mcs, and pcs. These results are combined using
glm.mids(), and results are pooled and reported. Note that by default, all
variables within the smallds data frame are included in each of the chained
equations (e.g., mcs and pcs are used as predictors in each of the imputation
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models).

> library(mice)
> imp = mice(smallds, m=25, maxit=25, seed=42)

> summary(pool(glm.mids(homeless ~ female + i1 + sexrisk +
indtot, family=binomial, data=imp)))

est se t df Pr(>|t|) lo 95 hi 95
(Intercept) -2.5366 0.59460 -4.266 456 2.42e-05 -3.7050 -1.3681
female -0.2437 0.24393 -0.999 464 3.18e-01 -0.7230 0.2357
i1 0.0231 0.00561 4.114 464 4.61e-05 0.0121 0.0341
sexrisk 0.0590 0.03581 1.647 463 1.00e-01 -0.0114 0.1294
indtot 0.0491 0.01582 3.105 455 2.02e-03 0.0180 0.0802

missing fmi
(Intercept) NA 0.01478
female 0 0.00182
i1 0 0.00143
sexrisk 1 0.00451
indtot 14 0.01728

The summary includes the number of missing observations as well as the frac-
tion of missing information (fmi). While the results are qualitatively similar,
they do differ, which is not surprising given the different imputation models
used.

Support for other missing data models is available in the mix and mitools
packages.

7.7 Propensity score modeling

Propensity scores can be used to attempt to approximate a randomized setting
in an observational setting where there are potential confounding factors [54,
55]. Here we consider comparisons of the PCS scores for homeless vs. non-
homeless subjects in the HELP study. Clearly, subjects were not randomized
to homelessness, so if we want to make causal inference about the effects of
homelessness, we need to adjust to selection bias with respect to homeless status
(as the homeless subjects may systematically different from the non-homeless
on other factors).

First, we examine the relationship between homelessness and PCS (physical
component score) without adjustment.
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> ds = read.csv("http://www.math.smith.edu/r/data/help.csv")
> attach(ds)
> lm1 = lm(pcs ~ homeless)
> summary(lm1)
Call:
lm(formula = pcs ~ homeless)

Residuals:
Min 1Q Median 3Q Max

-34.9265 -7.9030 0.6438 8.3869 25.8055

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.001 0.688 71.220 <2e-16 ***
homeless -2.064 1.013 -2.038 0.0422 *

Residual standard error: 10.75 on 451 degrees of freedom
Multiple R-squared: 0.009123,Adjusted R-squared: 0.006926
F-statistic: 4.152 on 1 and 451 DF, p-value: 0.04216

We see a statistically significant difference in PCS scores (p = 0.042), but
this unadjusted comparison does not account for other differences in homeless
status, and thus may be confounded.

One approach to this problem involves controlling for possible confounders
(in this case, age, gender, number of drinks, and MCS score) in a multiple
regression model (4.1.1). This yields the following results.

> lm2 = lm(pcs ~ homeless + age + female + i1 + mcs)
> summary(lm2)
Call:
lm(formula = pcs ~ homeless + age + female + i1 + mcs)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.21224 2.56675 22.679 < 2e-16 ***
homeless -1.14707 0.99794 -1.149 0.250992
age -0.26593 0.06410 -4.148 4.01e-05 ***
female -3.95519 1.15142 -3.435 0.000648 ***
i1 -0.08079 0.02538 -3.184 0.001557 **
mcs 0.07032 0.03807 1.847 0.065396 .

Residual standard error: 10.22 on 447 degrees of freedom
Multiple R-squared: 0.1117,Adjusted R-squared: 0.1017
F-statistic: 11.24 on 5 and 447 DF, p-value: 3.209e-10

http://www.math.smith.edu/r/data/help.csv
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Controlling for the other predictors has caused the parameter estimate to at-
tenuate to the point that it is no longer statistically significant (p = 0.25).
While controlling for other confounders appears to be effective in this problem,
other situations may be more vexing, particularly if the dataset is small and
the number of measured confounders is large. In such settings, estimation of
the propensity score (the probability of being homeless, conditional on other
factors), can be used to account for the set of unmeasured confounders, or can
be used to match comparable subjects based on values of the propensity score.

Estimation of the propensity score is straightforward using a logistic regres-
sion model (5.1.1). A formula object (see 4.1.1) is used to specify the model.

> form = formula(homeless ~ age + female + i1 + mcs)
> glm1 = glm(form, family=binomial)
> X = glm1$fitted
> lm3 = lm(pcs ~ homeless + X)

> summary(lm3)

Call:
lm(formula = pcs ~ homeless + X)

Residuals:
Min 1Q Median 3Q Max

-34.0278 -7.6229 0.9298 8.2433 25.6487

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 54.539 1.825 29.880 < 2e-16 ***
homeless -1.178 1.038 -1.135 0.25690
X -12.889 3.942 -3.270 0.00116 **

Residual standard error: 10.63 on 450 degrees of freedom
Multiple R-squared: 0.03212,Adjusted R-squared: 0.02782
F-statistic: 7.468 on 2 and 450 DF, p-value: 0.000645

As with the multiple regression model, controlling for the propensity also leads
to an attenuated estimate of the homeless coefficient, though this model only
requires 1 degree of freedom in the regression model of interest.

Another approach uses the propensity score as a tool to create a matched
sample that is relatively balanced on the terms included in the propensity
model. This is straightforward to do using the Matching library.
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> library(Matching)
> rr = Match(Y=pcs, Tr=homeless, X=X, M=1)
> summary(rr)

Estimate... -0.80207
AI SE...... 1.4448
T-stat..... -0.55516
p.val...... 0.57878

Original number of observations.............. 453
Original number of treated obs............... 209
Matched number of observations............... 209
Matched number of observations (unweighted). 252

We see that the causal estimate of −0.80 in the matched comparison is not
statistically significant (p = 0.58), which is similar to the other approaches that
accounted for the confounders. The MatchBalance() function can be used to
describe the distribution of the predictors (by homeless status) before and after
matching (to save space, only the results for age and i1 are displayed).

> MatchBalance(form, match.out=rr, nboots=10)
***** (V1) age ***** Before Matching After Matching
mean treatment........ 36.368 36.368
mean control.......... 35.041 36.423
std mean diff......... 16.069 -0.65642

mean raw eQQ diff..... 1.5981 0.94841
med raw eQQ diff..... 1 1
max raw eQQ diff..... 7 10

mean eCDF diff........ 0.037112 0.022581
med eCDF diff........ 0.026365 0.019841
max eCDF diff........ 0.10477 0.083333

var ratio (Tr/Co)..... 1.3290 1.2671
T-test p-value........ 0.070785 0.93902
KS Bootstrap p-value.. < 2.22e-16 0.3
KS Naive p-value...... 0.16881 0.34573
KS Statistic.......... 0.10477 0.083333
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***** (V3) i1 ***** Before Matching After Matching
mean treatment........ 23.038 23.038
mean control.......... 13.512 20.939
std mean diff......... 40.582 8.945

mean raw eQQ diff..... 9.6316 2.1071
med raw eQQ diff..... 8 1
max raw eQQ diff..... 73 66

mean eCDF diff........ 0.11853 0.018753
med eCDF diff........ 0.12377 0.011905
max eCDF diff........ 0.20662 0.087302

var ratio (Tr/Co)..... 2.3763 1.3729
T-test p-value........ 7.8894e-07 0.011786
KS Bootstrap p-value.. < 2.22e-16 0.3
KS Naive p-value...... 0.00013379 0.29213
KS Statistic.......... 0.20662 0.087302

Both these variables had distributions that were considerably closer to each
other in the matched sample than in the original dataset.

The Match() function can also be used to generate a dataset containing
only the matched observations (see the index.treated and index.control
components of the return value).

7.8 Empirical problem solving

7.8.1 Diploma (or hat-check) problem

Smith College is a residential women’s liberal arts college in Northampton, MA
that is steeped in tradition. One such tradition is to give every graduating
student a diploma at random (or more accurately, in a haphazard fashion). At
the end of the ceremony, a circle is formed, and students repeatedly pass the
diplomas to the person next to them, stepping out once they have received their
own diploma. This problem, also known as the hat-check problem, is featured
in Mosteller [44]. Variants provide great fodder for probability courses.

The analytic (closed-form) solution for the expected number of students
who receive their diplomas in the initial disbursement is very straightforward.
Let Xi be the event that the ith student receives their diploma. E[Xi] = 1/n
for all i, since the diplomas are assumed uniformly distributed. If T is defined
as the sum of all of the events X1 through Xn, E[T ] = n ∗ 1/n = 1 by the rules
of expectations. It is sometimes surprising to students that this result does not
depend on n. The variance is trickier, since the outcomes are not independent
(if the first student receives their diploma, the probability that the others will
increases ever so slightly).
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For students, the use of empirical (simulation-based) problem solving is
increasingly common as a means to complement and enhance analytic (closed-
form) solutions. Here we illustrate how to simulate the expected number of
students who receive their diploma as well as the standard deviation of that
quantity. We assume that n = 650.

We begin by setting up some constants and a vector for results that we
will use to store results. The students vector can be generated once, with
the permuted vector of diplomas generated inside the loop generated using
sample() (see 2.5.2). The == operator (1.5.2) is used to compare each of the
elements of the vectors.
numsim = 100000
n = 650
res = numeric(numsim)
students = 1:n
for (i in 1:numsim) {

diploma = sample(students, n)
res[i] = sum(students==diploma)

}

This generates the following output.

> table(res)
0 1 2 3 4 5 6 7 8

36568 36866 18545 6085 1590 295 40 9 2
> mean(res)
[1] 1.00365
> sd(res)
[1] 0.9995232

The expected value and standard deviation of the number of students who
receive their diplomas on the first try are both 1.

7.8.2 Knapsack problem (constrained optimization)

The Web site http://rosettacode.org/wiki/Knapsack_Problem describes a
fanciful trip by a traveler to Shangri-La. Upon leaving, they are allowed to take
as much of three valuable items as they like, as long as they fit in a knapsack.
A maximum of 25 weights can be taken, with a total volume of 25 cubic units.
The weights, volumes, and values of the three items are given in Table 7.1.

It is straightforward to calculate the solutions using brute force, by iterating
over all possible combinations and eliminating those that are over weight or too
large to fit. A number of support functions are defined, then run over all possible
values of the knapsack contents (after expand.grid() generates the list). The
findvalue() function checks the constraints and sets the value to 0 if they are
not satisfied, and otherwise calculates them for the set. The apply() function

http://rosettacode.org/wiki/Knapsack_Problem


7.8. EMPIRICAL PROBLEM SOLVING 225

Table 7.1: Weights, Volume, and Values for the Knapsack Problem
Item Weight Volume Value

I 0.3 2.5 3000
II 0.2 1.5 1800
III 2.0 0.2 2500

(see 2.13.6) is used to run a function for each item of a vector.
# Define constants and useful functions
weight = c(0.3, 0.2, 2.0)
volume = c(2.5, 1.5, 0.2)
value = c(3000, 1800, 2500)
maxwt = 25
maxvol = 25

# minimize the grid points we need to calculate
max.items = floor(pmin(maxwt/weight, maxvol/volume))

# useful functions
getvalue = function(n) sum(n*value)
getweight = function(n) sum(n*weight)
getvolume = function(n) sum(n*volume)

# main function: return 0 if constraints not met,
# otherwise return the value of the contents, and their weight
findvalue = function(x) {

thisweight = apply(x, 1, getweight)
thisvolume = apply(x, 1, getvolume)
fits = (thisweight <= maxwt) &

(thisvolume <= maxvol)
vals = apply(x, 1, getvalue)
return(data.frame(I=x[,1], II=x[,2], III=x[,3],

value=fits*vals, weight=thisweight,
volume=thisvolume))

}

# Find and evaluate all possible combinations
combs = expand.grid(lapply(max.items, function(n) seq.int(0, n)))
values = findvalue(combs)

Now we can display the solutions.
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> max(values$value)
[1] 54500
> values[values$value==max(values$value),]

I II III value weight volume
2067 9 0 11 54500 24.7 24.7
2119 6 5 11 54500 24.8 24.7
2171 3 10 11 54500 24.9 24.7
2223 0 15 11 54500 25.0 24.7

The first solution (with 9 of item I), no item II, and 11 of item III satisfies
the volume constraint, maximizes the value, and also minimizes the weight.
More sophisticated approaches are available using the lpSolve package for
linear/integer problems.

7.9 Further resources

Rubin’s review [56] and Schafer’s book [63] provide overviews of multiple im-
putation, while Van Buuren, Boshuizen, and Knook [75] and Raghunathan,
Lepkowski, van Hoewyk, and Solenberge [50] describe chained equation mod-
els. Horton and Lipsitz [28] and Horton and Kleinman [27] provide a review of
software implementations of missing data models.

Rizzo’s text [52] provides a comprehensive review of statistical computing
tasks implemented using R, while Horton, Brown, and Qian [25] describe the
use of R as a toolbox for mathematical statistics exploration.
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The HELP study dataset

A.1 Background on the HELP study

Data from the HELP (Health Evaluation and Linkage to Primary Care) study
are used to illustrate many of the entries. The HELP study was a clinical trial
for adult inpatients recruited from a detoxification unit. Patients with no pri-
mary care physician were randomized to receive a multidisciplinary assessment
and a brief motivational intervention or usual care, with the goal of linking
them to primary medical care. Funding for the HELP study was provided by
the National Institute on Alcohol Abuse and Alcoholism (R01-AA10870, Samet
PI) and National Institute on Drug Abuse (R01-DA10019, Samet PI).

Eligible subjects were adults, who spoke Spanish or English, reported alco-
hol, heroin or cocaine as their first or second drug of choice, resided in proximity
to the primary care clinic to which they would be referred or were homeless.
Patients with established primary care relationships they planned to continue,
significant dementia, specific plans to leave the Boston area that would pre-
vent research participation, failure to provide contact information for tracking
purposes, or pregnancy were excluded.

Subjects were interviewed at baseline during their detoxification stay and
follow-up interviews were undertaken every 6 months for 2 years. A variety
of continuous, count, discrete, and survival time predictors and outcomes were
collected at each of these five occasions.

The details of the randomized controlled trial along with the results from a
series of additional observational analyses have been published [59, 51, 29, 40,
34, 58, 57, 65, 35, 79].

A.2 Road map to analyses of the HELP dataset

Table A.1 summarizes the analyses illustrated using the HELP dataset. These
analyses are intended to help illustrate the methods described in the book.

227
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Interested readers are encouraged to review the published data from the HELP
study for substantive analyses.

Table A.1: Analyses Illustrated Using the HELP Dataset

Description Section
Data input and output 2.13.1
Summarize data contents 2.13.1
Data display 2.13.4
Derived variables and data manipulation 2.13.5
Sorting and subsetting 2.13.6
Summary statistics 3.6.1
Exploratory data analysis 3.6.1
Bivariate relationship 3.6.2
Contingency tables 3.6.3
Two-sample tests 3.6.4
Survival analysis (logrank test) 3.6.5
Scatterplot with smooth fit 4.7.1
Regression with prediction intervals 4.7.2
Linear regression with interaction 4.7.3
Regression diagnostics 4.7.4
Fitting stratified regression models 4.7.5
Two-way analysis of variance (ANOVA) 4.7.6
Multiple comparisons 4.7.7
Contrasts 4.7.8
Logistic regression 5.7.1
Poisson regression 5.7.2
Zero-inflated Poisson regression 5.7.3
Negative binomial regression 5.7.4
Lasso model selection 5.7.5
Quantile regression 5.7.6
Ordinal logit 5.7.7
Multinomial logit 5.7.8
Generalized additive model 5.7.9
Reshaping datasets 5.7.10
General linear model for correlated data 5.7.11
Random effects model 5.7.12
Generalized estimating equations model 5.7.13
Generalized linear mixed model 5.7.14
Proportional hazards regression model 5.7.15
Bayesian Poisson regression 5.7.16
Cronbach α 5.7.17
Factor analysis 5.7.18
Recursive partitioning 5.7.20



A.3. DETAILED DESCRIPTION OF THE DATASET 229

Linear discriminant analysis 5.7.21
Hierarchical clustering 5.7.22
Scatterplot with multiple y axes 6.6.1
Bubbleplot 6.6.2
Conditioning plot 6.6.3
Multiple plots 6.6.4
Dotplot 6.6.5
Kaplan–Meier plot 6.6.6
ROC curve 6.6.7
Pairs plot 6.6.8
Visualize correlation matrix 6.6.9
Multiple imputation 7.6
Propensity score modeling 7.7

A.3 Detailed description of the dataset

The Institutional Review Board of Boston University Medical Center approved
all aspects of the study, including the creation of the de-identified dataset.
Additional privacy protection was secured by the issuance of a Certificate of
Confidentiality by the Department of Health and Human Services.

A de-identified dataset containing the variables utilized in the end of chapter
examples is available for download at the book Web site:
http://www.math.smith.edu/r/data/help.csv

Variables included in the HELP dataset are described in Table A.2. A copy
of the study instruments can be found at: http://www.math.smith.edu/help

Table A.2: Annotated Description of Variables in the HELP
Dataset

VARIABLE DESCRIPTION (VALUES) NOTE
a15a number of nights in overnight

shelter in past 6 months (range
0–180)

see also homeless

a15b number of nights on the street
in past 6 months (range 0–180)

see also homeless

age age at baseline (in years) (range
19–60)

anysubstatus use of any substance postdetox
(0=no, 1=yes)

see also daysanysub

cesd∗ Center for Epidemiologic Stud-
ies Depression scale (range 0–
60)

see also f1a–f1t

http://www.math.smith.edu/r/data/help.csv
http://www.math.smith.edu/help


230 APPENDIX A. THE HELP STUDY DATASET

d1 how many times hospitalized
for medical problems (lifetime)
(range 0–100)

daysanysub time (in days) to first use of any
substance postdetox (range 0–
268)

see also anysubstatus

daysdrink time (in days) to first alcoholic
drink post-detox (range 0–270)

see also drinkstatus

dayslink time (in days) to linkage to pri-
mary care (range 0–456)

see also linkstatus

drinkstatus use of alcohol postdetox (0=no,
1=yes)

see also daysdrink

drugrisk∗ Risk-Assessment Battery
(RAB) drug risk score (range
0–21)

see also sexrisk

e2b∗ number of times in past 6
months entered a detox pro-
gram (range 1–21)

f1a I was bothered by things that
usually don’t bother me (range
0–3#)

f1b I did not feel like eating; my ap-
petite was poor (range 0–3#)

f1c I felt that I could not shake off
the blues even with help from
my family or friends (range 0–
3#)

f1d I felt that I was just as good as
other people (range 0–3#)

f1e I had trouble keeping my mind
on what I was doing (range 0–
3#)

f1f I felt depressed (range 0–3#)
f1g I felt that everything I did was

an effort (range 0–3#)
f1h I felt hopeful about the future

(range 0–3#)
f1i I thought my life had been a

failure (range 0–3#)
f1j I felt fearful (range 0–3#)
f1k My sleep was restless (range 0–

3#)
f1l I was happy (range 0–3#)
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f1m I talked less than usual (range
0–3#)

f1n I felt lonely (range 0–3#)
f1o People were unfriendly (range

0–3#)
f1p I enjoyed life (range 0–3#)
f1q I had crying spells (range 0–3#)
f1r I felt sad (range 0–3#)
f1s I felt that people dislike me

(range 0–3#)
f1t I could not get going (range 0–

3#)
female gender of respondent (0=male,

1=female)
g1b∗ experienced serious thoughts of

suicide (last 30 days, values
0=no, 1=yes)

homeless∗ 1 or more nights on the street or
shelter in past 6 months (0=no,
1=yes)

see also a15a and a15b

i1∗ average number of drinks (stan-
dard units) consumed per day
(in the past 30 days, range 0–
142)

see also i2

i2 maximum number of drinks
(standard units) consumed per
day (in the past 30 days range
0–184)

see also i1

id random subject identifier
(range 1–470)

indtot∗ Inventory of Drug Use Con-
sequences (InDUC) total score
(range 4–45)

linkstatus post-detox linkage to primary
care (0=no, 1=yes)

see also dayslink

mcs∗ SF-36 Mental Component Score
(range 7-62)

see also pcs

pcrec∗ number of primary care visits in
past 6 months (range 0–2)

see also linkstatus,
not observed at base-
line

pcs∗ SF-36 Physical Component
Score (range 14-75)

see also mcs
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pss_fr perceived social supports
(friends, range 0–14)

see also dayslink

satreat any BSAS substance abuse
treatment at baseline (0=no,
1=yes)

sexrisk∗ Risk-Assessment Battery
(RAB) drug risk score (range
0–21)

see also drugrisk

substance primary substance of abuse (al-
cohol, cocaine or heroin)

treat randomization group (0=usual
care, 1=HELP clinic)

Notes: Observed range is provided (at baseline) for continuous variables.
* denotes variables measured at baseline and followup (e.g., cesd is baseline
measure, cesd1 is measure at 6 months, and cesd4 is measure at 24 months).
#: For each of the 20 items in HELP section F1 (CESD), respondents were
asked to indicate how often they behaved this way during the past week (0 =
rarely or none of the time, less than 1 day; 1 = some or a little of the time, 1
to 2 days; 2 = occasionally or a moderate amount of time, 3 to 4 days; or 3 =
most or all of the time, 5 to 7 days); items f1d, f1h, f1l, and f1p were reverse
coded.
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Subject index 
References to the HELP examples are denoted in italics. The primary entry 
for a command is given in bold, 

3-D plot, 170 
95% confidence interval 

mean, 75 
proportion, 76 

absolute value, 49 
accelerated failure time model 

frailty 128 
access 

elements, 10 
files, 49 
variables, 32 

access column, 12 
access row, 12 
add lines to plot, 174 
add normal density, 175 
adding marginal nig plot, 175 
adding straight line, 174 
adding text, 176 
age variable, SS7 229 
agreement, 80 
AIC, 97, 111 
Akaike information criterion (AIC), 

97, 117 
alcohol abuse, 232 
alcoholic drinks 

HELP dataset, 231 
alpha (Cronbach's), 133 
analysis of variance 

interaction plot, 170 
one-way, 96 
two-way, 97, 11^ 

analytic power calculations, 197 
and operator, 67 

angular plot, 170 
annotating datasets, 65 
ANOVA 

tables, 97 
Aotearoa (New Zealand), 1 
Apple R FAQ, 3 
arbitrary quantiles, 74 
archive network (CRAN), 2 
area under the curve, 171 
arguments 

to functions, 15 
variable number, 16 

ARIMA model, 127 
arithmetic operators, 11 
arrays, 66 

extract elements, 13 
arrows, 176 
assertions, 60 
assignment operators, 10 
association plot, 170 
assumption 

proportionality, 128 
attach dataframes, 5 
attributable risk, 79 
attributes, 15 
AUC (area under the curve), 171 
Auckland, University of, 1 
automation, 32 
autoregressive integrated moving 

average time series model, 
127 

available datasets, 24 
average 

running, 205 

241 



242 

average number of drinks 
HELP dataset, 231 

axes 
labels, 179 
multiple, 166 
omit, 180 
range, 179 
style, 179 
values, 179 

barplot, 168 
baseline hazard, 128 
baseline interview, 227 
batch mode, 6 
Bates, Douglas, 1 
Bayesian 

inference, 135 
inference task view, 20, 

131 
information criterion, 98 
Poisson regression, 155 

BCA intervals, 75 
best linear unbiased predictors, 

125 
beta distribution, 75 
beta function, 50 
bias-corrected and accelerated 

intervals, 75 
BIC, 98 
binomial family, 122 
binomial probabilities 

tabulation, 206 
bivariate loess, 129 
bivariate relationships, 83 
BMDP files, 27, 29 
BMP 

exporting, 181 
book Web site, xxii 
Boolean 

operations, 11, 35, 46, 67 
Boolean operator, 192 
bootstrap sample, 42 
bootstrapping, 75, 82 
box around plots, 178 
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boxplot, 169 
parallel, 150 
side-by-side, 169 
symbols, 176 

Breslow estimator, 128 
Breslow-Day test, 78 
Breusch-Pagan test, 102 
"broken stick'7 models, 126 
bubble plot, 167, 183 
bug reports, 24 
bugs and other errors, 24 
built>in functions, 15 

c statistic, 121 
calculate derivatives, 51 
calculations 

power, 197 
calculus, 51 
calling functions, 15 
case-sensitivity, 4 
categorical covariate parameteriza­

tion, 94 
categorical data 

analysis, 135 
plot, 170 
table, 86 

categorical from continuous, 37 
categorical predictor, 94 
categorical variables, 57, 69, 94 

ordering of levels, 94 
Cauchy 

distribution, 75 
link function, 122 

causal inference, 219 
censored data, 128, 171 
Center for Epidemiologic Studies 

Depression (CESD) scale, 
229 

centering, 75 
CESD, 65, 66 
cesd variable, 65, 229 
cesd tv variable, 1^1 
chained equation models, 217 
Chambers, John, 1 
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change working directory, 49 
character translations, 37 
character variable, see string vari­

able 
characteristics 

test, 79 
characters 

plot, 173 
chemometrics task view, 20 
chi-square 

distribution, 75 
statistic, 78 

Cholesky decomposition, 125 
choose function, 50 
circadian plot, 170 
circle plot, 167, 183 
circles, 176 
circular plot, 170 
citing 

packages, 22 
R, 5 

class methods, 15 
class variable, 94 
class variables, tf <?, 94 
classification, 134, 135, 159 
classification table, 77 
clear graphics settings, 111 
clinical trial, 227 
clinical trials 

task view, 20 
closest values, 204 
closing a graphic device, 182 
cluster analysis, 134 

task view, 20, 133, 134 
clustered data, 125 
cocaine, 232 
Cochran-Mantel-Haenszel test, 78 
code examples 

downloading, xxii 
coefficient of variation, 75 
coercing 

character variable from numeric, 
35 

dataframes into matrices, 14 
date from character, 27 

date to numeric, 46 
factor variable from numeric, 37 
matrices into dataframes, 14 
numeric from character, 27 

color 
palettes, 180 
selection, 180 

column access, 12 
column width, 63 
column-wise operations, 49 
combinations 

function, 50 
comma separated files (CSV), 27 
command history, 2, 3, 48 
comments, 12 
comparison 

floating point variables, 51 
operators, 11 

comparisons 
models, 97 

complementary log-log link function, 
122 

complex fixed format files, 26, 211 
two lines, 214 

complex numbers, 51 
complex survey sampling, 131, 135 
component-wise matrix multiplica­

tion, 53 
comprehensive R archive network, 

2 
computational economics task view, 

20 
computational physics task view, 20 
concatenate, 199 

datasets, 44 
strings, 35 
vectors, 34 

conditional execution, 60 
conditional logistic regression model, 

125 
conditioning plot, 168, 184 
confidence interval 

for parameter estimates, 103 
for predicted observations, 104 
for the mean, 103, 106 
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confidence level 
default, 17 

confidence limits 
for individual (new) observations, 

103 
for the mean, 103 

confounding, 219 
Consequences of Drug Use, see i n d t o t 

variable 
consistency 

internal, 133 
constrained optimization, 224 
contingency table, 77, 36 

plot, 170 
contour plot, 170 
contrasts, 118 
control flow, 59 
control structures, 59 
controlling graph size, 177 
controlling Type-I error rate, 99 
convergence diagnosis for MCMC, 

131, 156 
converting datasete 

long (tall) to wide format, 44 
wide to long (tall) format, 43 

Cook's distance, 101 
coordinate systems (maps), 213 
correlated binary variables 

generating, 202 
correlated data, 148 

regression models, 125 
correlated residuals, 125 
correlation 

confidence interval, 80 
Kendall, SO 
matrix, 83, 192 
Pearson, 80 
Spearman, 80 

correspondence analysis, 135 
cosine function, 50 
count models 

goodness of fit, 123 
negative binomial regression, 123, 

140 
Poisson regression, 122, 138 

zero-inflated negative binomial, 
124 

zero-inflated Poisson regression, 
123, 139 

counts, 77 
covariance matrix, 105, I48 
covariate imbalance, 219 
Cox proportional hazards model, 128, 

154 
frailty, 128 
simulate data, 203 

CPU time, 47 
CRAN, 2 

task views, 19 
Crantastic, 19 
create 

ASCII datasets, 30 
categorical variable from con­

tinuous, 37 
categorical variable using logic, 

38 
datasets for other packages, 29 
date variable, 46 
factors, 94 
files for other packages, 29 
lagged variable, 41 
matrix from vector, 52 
matrix from vectors, 52 
numeric variable from string, 34 
observation number, 41 
recode categorical variable, 37 
string variable from numeric, 

34 
time variables, 47 

Cronbach'e a, 133 
cross-classification table, 69t 77 
crosstabs, 77, 86 
CSV (comma-separated) files, 27 
cumulative 

product, 205 
sum, 205 

cumulative baseline hazard, 128 
cumulative density function 

area to the left, 55 
cumulative density functions, 55 
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cumulative probability density plot, 
172 

currency, 31 
curve plotting, 172 

Dalgaard, Peter, 1 
dashed line, 179 
data 

display, 31 
entry, 29 
input, 63 
output, 63 

data generation, 59 
data harvesting, 214 
data input 

two lines, 214 
data structures, 10 
dataframe 

comparison with matrix, 14 
remove from workspace, 14 

dataframes, 10, 13 
comparison with column bind, 

13 
detaching, 32 

dataset 
comments, 33 
HELP study, 229 
other packages, 27 

datasets, xxii, 24 
date object, 46 
date variable 

create date, 46 
create time, 47 
extract month, 47 
extract quarter, 47 
extract weekday, 46 
extract year, 47 
reading, 26 

days l i nk variable, 96^ 230 
DBF files, 27, 29 
decimal representation, 51 
default confidence level, 17 
defining functions, 16 
demonstrations, 5 
dendrogram, 134 

245 

density functions, 55 
generate random, 56 
probability, 56 
quantiles, 56 

density plot, 83, 89, 172 
depressive symptoms, 65 
derivatives, 51 
derived variable, 66} 61 
design matrix, 104, 111 

specification, 94 
design of experiments task view, 20 
design weights, 131 
detach 

dataframes, 32, 113 
datasets, 14 
packages, 14, 32, 145 

determinant, 54 
detoxification, 227, 230 
deviance, 122 

tables, 97 
dffits, 101 
diagnostic agreement, 79, 171 

ROC curve, 190 
diagnostic plots, 102, 111 
diagnostics from linear regression, 

111 
diagonal elements, 53, 54 
difference in log-likelihoods, 97 
difference in sets, 34 
dimension, 53 
directory delimiter, 26 
directory structure in R, 26 
dispersion parameter, 140 
display 

data, 64 
formatted output, 31 
information about objects, 14 
objects, 31 

distance 
Cook's, 101 
metric, 36 

distribution 
beta, 75 
cauchy, 75 
chi-squared, 75 



246 SUBJECT INDEX 

empirical cumulative density plot, 
172 

exponential, 75 
F, 75 
gamma, 75 
geometric, 75 
logistic, 75 
lognormal, 75 
negative binomial, 75 
normal, 56, 75 
parameters, 75 
Poisson, 75 
probability, 55 
probability density plot, 172 
q-q plot, 172 
quantile, 56 
quantile-quantile plot, 172 
stem plot, 169 
t, 75 
Weibull, 75 

DocBook document type definition, 
30 

document type definition, 30 
documentation, 8 
dotplot, 168, 187 
downloading 

code examples, xxii 
R, 2 

drinks of alcohol 
HELP dataset, 231 

d r i n k s t a t variable, 67 
dropping variables, 46 
Drug Use Consequences, see i n d t o t 

variable 
d r u g r i s k variable, 19£t 230 
DTD, 30 
duplicated values, 41 
dynamic graphics task view, 20 

ecological data task view, 20 
econometrics task view, 20 
edit 

data, 29 
edit distance, 36 
efficiency of vector operations, 59 

Efron estimator, 128 
eigenvalues and eigenvectors, 54 
elapsed time, 47 
empirical cumulative probability den­

sity plot, 172 
empirical density plot, 89 
empirical estimation, 223 
empirical finance task view, 20 
empirical power calculations, 198 
empirical probability density plot, 

172 
empirical variance, 127, 152 
entering data, 29 
environment variables 

Windows, 6 
environmental task view, 20 
Epi Info files, 27 
error recovery, 59 
estimated density plot, 89 
etiquette, 24 
exact logistic regression model, 122 
exact test of proportions, 78 
example code 

downloading, xxii 
examples (vignettes) of typical us­

age, 20 
Excel CSV (comma-separated) files, 

27 
excess zeroes, 123, 124 
exchangeable working correlation, 127 
execute command in operating sys­

tem, 48 
execution 

conditional, 60 
exiting, 4 
expected cell counts, 87 
expected values, 22S 
experimental design task view, 20 
exponential distribution, 75 
exponentiation, 49 

operator, 11 
export 

BMP, 181 
datasets for other packages, 29 
graphs, 180 
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JPEG, 181 
PDF, 180 
PNG, 181 
postscript, 180 
TIFF, 181 
WMF (windows metafile format), 

181 
expressions, 10, 15 
extensible markup language, 28 

write files, 30 
extract characters from string, 34 
extract from objects, 13, 80 

F distribution, 75 
f 1 variables, 66, 156, 230 
factor analysis, 133, 157 
factor levels, 94 
factor variable, 69, &4 
factorial function, 50 
factors 

ordered, 94 
ordering of levels, 94 

failure time data, 128 
Falcon, Seth, 1 
false positive, 171 
family 

binomial, 122 
gamma, 122 
Gaussian, 122 
inverse Gaussian, 122 
Poisson, 122 

FAQ, 24 
Apple R, 3 
R, 10 
Windows R, 2 

female variable, 67, 231 
file browsing, 49 
finance task view, 20 
find a string within a string, 35 
find approximate string, 36 
find closest values, 204 
find working directory, 48 
finite mixture models task 

view, 20 
Fisher's exact test, 78, 86 

fit model separately by group, 112 
rive-number summary, 74 
fixed effects, 125 
fixed format files, 26 
floating point representation, 51 
follow-up interviews, 227 
footnotes, 175 
foreign format, 65 
formatted data files, 29 
formatted output, 32 
formatting output, 31 
formatting values of variables, 38 
formula object, 93 
forward stagewise regression, 130 
Foundation for Statistical Comput­

ing, 1 
fraction of missing information, 

219 
Friedman's "super smoother," 176 
frequently asked questions, see FAQ 
function 

plotting, 172 
functions, 15 

defining, 16 
fuzzy search, 36 

G-rho family of Harrington and Flem­
ing, 90 

g ib variable, 184., 231 
g i b t v variable, i^tf, 152 
GAM, 129 
Gamma 

function, 208 
gamma 

family, 122 
function, 50 
regression, 121 

gamma distribution, 75 
Gaussian distribution, 55 
Gaussian family, 122 
gender, 231 
gender variable, 69^ 114 
general linear model for correlated 

data, 125, 148 
generalized additive model, 129, 14.5 
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generalized estimating equation 135, 
152 

exchangeable working correla­
tion, 127 

independence working correla­
tion, 127 

unstructured working correla­
tion, 127 

generalized linear mixed model, 127, 
153 

generalized linear model, 121, 135, 
136 

generalized multinomial model, 125 
generate 

arbitrary random variables, 58 
correlated binary variables, 202 
Cox model, 263 
exponential random variables, 

58 
generalized linear model random 

effects, 201 
grid of values, 62 
logistic regression, 200 
multinomial random variables, 

57 
multivariate normal random vari­

ables, 57 
normal random variables, 57 
other random variables, 58 
pattern of repeated values, 60 
predicted values, 100 
random variables, 55 
residuals, 100 
sequence of values, 60 
truncated normal random vari­

ables, 58 
uniform random variables, 56 

genetics task view, 20 
Gentleman, Robert, 1 
geocoded data, 211 
geometric distribution, 75 
getting help, 24 
goodness of fit, 123, 138 

count models, 123 
ROC curve, 190 

graphical models task view, 20 
graphical user interface, 4 

R Commander, 7 
graphics 

boxplot, 169 
exporting, 180 
layout, 179 
settings, 178 
side-by-side boxplot s, 169 
size, 177 
task view, 20, 165 

greater than operator, 61 
grid 

rectangular, 175 
grid of values, 62 
grid search, 224 
grouping variable 

linear model, 96 
growth curve models, 126 
guide to packages, 19 
guidelines 

R-help postings, 24 

hanging rootogram, 123 
Harrington and Fleming G-rho fam­

ily, 90 
harvesting data, 214 
hat matrix, 101 
hat> check problem, 223 
hazard 

cumulative baseline, 128 
Health Evaluation and Linkage to 

Primary Care (HELP) study, 
227 

health survey 
SF-36, 231 

help 
getting, 24 
R packages, 20 
system, 5, 8 

HELP study 
clinic, 232 
dataset, 229 
introduction, 227 
results, 227 



SUBJECT INDEX 249 

heroin, 232 
heteroscedasticity test, 102 
hierarchical clustering, 134, 162 
high-performance computing task view, 

20 
histogram, 83, 168 
history of commands, 2, 3, 48 
history of R, 1 
homeless variable, 86, 136, 231 
homelessness 

definition, 229 
homogeneity of odds ratio, 78 
honest significant difference, 99,118 
Hornik, Kurt, 1 
hospitalization, 229 
HTML files, 30 

harvesting data, 214 
HTTP 

reading from URL, 28 
Huber variance, 152 
hypertext markup language format 

(HTML), 30 
hypertext transport protocol (HTTP), 

28 

i l variable, 67, 138, 231 
i 2 variable, 6% 231 
Iacus, Stefano, 1 
id number, 41 
i d variable, 231 
identifying points, 177 
identity link function, 122 
if statement, 42, 60 
Ihaka, Ross, 1 
image plot, 170 
imaginary numbers, 51 
imaging task view, 20 
import data, 27 
imputation, 217 
income inequality, 129 
incomplete data, 39, 217 
independence working correlation, 127 
index 

R, xxii 
subject, xxii 

indexing 
in R, 65, 211 
matrix, 53 
vector, 10 

indicator variable, 94 
individual level data, 79 
i n d t o t variable, 136, 183, 231 
InDUC (Inventory of Drug Use Con­

sequences), 231 
infinite values, 40 
influence, 101 
information criterion (AIC), 97 
information criterion (BIC), 98 
information matrix, 104 
installing 

libraries, 18 
on Linux, 4 
on Mac OS X, 3 
on Windows, 2 
R , 2 

integer functions, 50 
integer problems, 51, 226 
interaction, 95 

linear regression, 108 
plot, 114 
testing, 115 
two-way ANOVA, 114 

interaction plot, 170 
intercept 

no, 95 
internal consistency, 133 
interquartile values, 74 
intersection, 34 
interval censored data, 171 
introduction to R, 1, 8 
Inventory of Drug Use 

Consequences, see i n d t o t 
variable 

inverse Gaussian family, 122 
inverse link function, 122 
inverse probability integral transform, 

58 
invert matrix, 53 
item Tesponse models, 135 
iterative proportional fitting, 124 
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jittering, 174 
JPEG 

exporting, 181 

k-means clustering, 134 
Kaplan-Meier plot, 171, 188 
Kappa, 80 
keeping variables, 46 
Kendall correlation, 80 
kernel smootber plot, 172 
knapsack problem, 224 
Knuth, Donald, 32 
Kolmogorov-Smirnov test, 81, 89 
Kruskal-Wallis test, 81 

LI-constrained fitting, 130 
labeling variables, 38 
labels 

variable, 39 
lag function, 41 
lasso method, 130 
lasso regression, 140 
latent variable models, 135 
KOEX, 32 
least absolute shrinkage and selec­

tion operator, 130 
least angle regression, 130 
least squares 

nonlinear, 129 
legend, 11 

adding, 177 
Leisch, Priedrich, 1 
length of string, 35 
Lentb, Russell, 32 
less than operator, 61 
Levenshtein edit distance, 36 
leverage, 101 
libraries, 18 
library 

help, 20 
licensing information, 5 
likelihood ratio test, 97, 115 
line 

style, 179 
types, 179 
width, 179 

linear combinations of parameters, 
99 

linear discriminant analysis, 134, 
161 

linear models, 93 
by grouping variable, 96 
categorical predictor, 94 
diagnostic plots, 102 
diagnostics, 111 
generalized, 121 
interaction, 95, 108 
no intercept, 95 
parameterization, 94 
residuals, 100 

standardized, 100 
studentized, 100 

standardized residuals, 100 
stratified analysis, 96 
studentized residuals, 100 
test for heteroscedasticity, 

102 
linear programming, 51, 226 
linear regression, 105 
fines on plot, 174 
link function 

caucbit, 122 
cloglog, 122 
identity, 122 
inverse, 122 
log, 122 
logit, 122 
probit, 122 
square root, 122 

linkage to primary care, 230 
l i n k s t a t u s variable, 90, 231 
Linux installation, 4 
list files, 49 
fist of packages, 22 
lists, 11 

extract elements, 13, 80 
literate programming, 32 
local polynomial regression, 

174 
locating points, 177 
loess 

bivariate, 129 
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log 
base 10, 49 
base 2, 49 
base e, 49 

log link function, 122 
log of commands, 48 
log scale, 180 
log-likelihood, 97 
log-linear model, 124 
log-rank test, 90 
logic, 38 
logical expressions, 37, 38 
logical operator, 11 
logical operators, 37 
logistic distribution, 75 
logistic regression, 121, 136 

c statistic, 121 
generating, 200 
Nagelkerke R2, 121 
ROC curve, 190 

logit link function, 122 
lognormal distribution, 75 
lognormal regression, 121 
logrank test, 82 
long (tall) to wide format conver­

sion, 44 
long datasets 

reshaping, 43 
longitudinal data, 125 
longitudinal regression, 135 

reshaping datasets, 1^6 
looping, 59 
lower to upper case conversions, 37 
lowess, 129, U5, 174 
Lumley, Thomas, 1 

M estimation, 129 
Mac OS X 

installation, 3 
machine learning task view, 20 
machine precision, 51 
Macintosh R FAQ, 3 
MAD regression, 130 
Maechler, Martin, 1 
mailing list 

R-help, 24 
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make variables available, 32 
manipulate string variables, 34-36 

remove spaces, 36 
split, 36 

Mantel-Haenszel test, 78 
map plotting, 211 
maps 

coordinate systems, 213 
margin specification, 178 
marginal plot, 175 
Markov Chain Monte Carlo, 131, 

155, 208 
matching, 219 
mathematical constants, 50 
mathematical expressions, 71, 176 
mathematical functions 

absolute value, 49 
beta, 50 
choose, 50 
exponential, 49 
factorial, 50 
gamma, 50 
integer functions, 50 
log, 49 
maximum, 49 
mean (average), 49 
minimum, 49 
natural log, 49 
permute, 50 
square root, 49 
standard deviation, 49 
sum, 49 
trigonometric functions, 50 

mathematical programming and op­
timization 

task view, 51 
mathematical programming task view, 

20 
mathematical symbols 

adding, 176 
matrix, 12, 52 

component-wise multiplication, 
53 

covariance, 105 
create, 52 
create from vector, 52 
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design, 104 
dimension, 53 
extract elements, 13 
graphs, 102 
hat, 101 
indexing, 12, 53 
information, 104 
inversion, 53 
large, 52 
multiplication, 11, 53 
overview, 52 
sparse, 52 
transposition, 52 

matrix multiplication, 57, 104 
matrix plots, 167 
maximum, 49, 74 
maximum likelihood estimation, 

75 
maximum number of drinks 

HELP dataset, 231 
MCMC, 131, 155, 208 
McNemar's test, 78 
mcs variable, S37 231 
mean, 73, 75 

trimmed, 74 
mean (average), 49 
median, 74 
median regression, 130 
medical imaging task view, 20 
medical problems, 229 
menu-based interface, 7 
merging datasets, 44 
metadata, 15 
methods, 15 
metric for distance, 36 
Metropolis-Hastings algorithm, 208 
MICE (chained equations), 217 
Microsoft Excel CSV 

(comma-separated) files, 27 
minimum, 49, 74 
minimum absolute deviation regres­

sion, 130 
Minitab files, 27 
missing data, 39, 66, 217 
missing information fraction, 219 

missing values in tables, 77 
mixed effects models, 135 
mixed model, 125 

generating, 201 
logistic, 127 
logistic regression, 153 

model 
comparisons, 97, 117 
diagnostics, 111 
selection, 97, 111 
specification, 95, 108 

model selection, 130 
lasso, 14 0 
stepwise, 97 

modulus operator, 11 
month variable, 47 
mosaic plot, 170 
motivational interview, 227 
moving average autoregreseive time 

series model, 127 
multilevel models, 127 
multinomial logit, 144 
multinomial model 

generalized, 125 
nominal outcome, 125 
ordered outcome, 124 

multinomial random variables, 57 
multiple comparisons, 99, 118 
multiple imputation, 217 
multiple plot, 185 
multiple plots per page, 178 
multiple y axes, 182 

scatterplot, 166 
multiplication 

matrix, 57 
multiply matrix, 53 
multivariate models 

task view, 135 
multivariate statistics 

task view, 133 
multivariate statistics task 

view, 20 
multiway tables, 78 
Murdoch, Duncan, 1 
Murrell, Paul, 1, 63 
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Nagelkerke E? for logistic regression 
121 

named arguments, 16, 17 
names and variable types, 33 
native data files, 29 
native files, 25 
natural language processing task view, 

20 
negative binomial distribution, 75 
negative binomial model 

zero-inflated, 124 
negative binomial regression, 123, 

140 
nested quotes, 39 
new users, 8 
New Zealand (Aotearoa), 1 
NIAAA, 227 
NIDA, 227 
NLP optimization, 51 
no intercept, 95 
nonlinear least squares, 129 
nonparametric tests, 81, 89 
normal density, 175 
normal distribution, 55, 56, 7i, 75 
normal random variables, 57 

truncated, 58 
normality tests, 77 
normalized residuals 

mixed model, 125 
normalizing, 75 
normalizing constant, 208 
not a number (NaN), 40 
not found 

object, see attach 
notched boxplot, 169 
NP completeness, 224 
number of digits to display, 32 
numeric from string, 34 
numeric operators, 11 

object not found, see attach 
objects, 10 

display, 31 
displaying, 14 

observation number, 41 

253 

Octave files, 27 
odds ratio, 79, 86 

homogeneity, 78 
ODF (open document format) files, 

32 
ODS 

parameter estimates as dataset, 
137 

omit axes, 180 
omit values, 40 
one-way analysis of variance, 96 
open document format, 32 
open office format, 32 
open-source, xxi 
operating system 

change working directory, 49 
execute command, 48 
find working directory, 48 
list files, 49 
pause execution, 48 

operators, 11 
optimization, 51 

task view, 20 
optimization and mathematical pro­

gramming 
task view, 51 

optimization with constraints, 224 
options 

restore previous values, 193 
OR (odds ratio), 79 
or operator, 67 
order statistics, 73 
ordered 

factors, 94 
ordered multinomial model, 124 
ordering of levels, 94 
ordinal logit, 124, 143 
orientation 

axis labels, 179 
boxplot, 169 

output 
redirection, 31 

overdiepersed binomial regression, 121 
overdispersed Poisson regression, 121 
overdispersion, 122 
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package 
remove from workspace, 14 

packages, 18 
citing, 22 
detaching, 32 
help, 20 
listing, 22 

page 
multiple plots, 178 

pairs plot, 190 
pairwise differences, 118 
palettes of colors, 180 
parallel boxplots, 150 
parallel computing task view, 20 
parameter estimates 

confidence interval, 103 
standard errors, 102 
used as data, 102 

parameter estimation, 75 
univariate distribution, 75 

parameterization of categorical vari­
able, 94 

reference category, 117 
partial file read, 26 
path variable 

Windows, 6 
pathological distribution 

sampling, 208 
pause execution for a time interval, 

48 
pes variable, 83, 231 
PDF 

exporting, 180 
Pearson chi-square statistic, 78 
Pearson correlation, 80 
Pearson's x 2 test, 86, 123 
percentile method, 75 
percentiles 

probability density 
function, 56 

permutation test, 81, 82, 88 
permutations 

function, 50 
permuted sample, 42 
pharmacokinetic task view, 20 

Pi (TT), 50 
pixels, 177 
plot 

adding arrows, 176 
adding footnotes, 175 
adding polygons, 176 
adding shapes, 176 
adding text, 176 
arbitrary function, 172 
characters, 173 
conditioning, 168 
curve, 172 
limits, 106 
maps, Ml 
predicted hues, 104 
predicted values, 104 
regression diagnostics, 102 
rotating text, 176 
symbols, 173 
time series data, 216 
titles, 175 

Plummer, Martyn, 1 
PNG 

exporting, 181 
point size specification, 177 
points, 173 

locating, 177 
Poisson distribution, 75 
Poisson family, 122 
Poisson regression, 121, 122, 1S8 

zero-inflated, 123, 139 
polygons, 176 
polynomial regression, 129 
posterior 

convergence diagnosis, 156 
posterior probability, 131 
posting guide (R-help), 24 
postscript 

exporting, 180 
power calculations 

analytic, 197 
empirical, 198 

predicted values 
generating from linear model, 

100 
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prediction interval 
for the mean, 106 

primary care 
linkage, 230 
visits, 231 

primary substance of abuse, 232 
principal component analysis, 133, 

158 
printing formatted output, 31 
prior distribution, 131 
probability, 223 
probability density 

area to the left, 55 
plot, 172 
quantile, 56 

probability distributions, 11 
quantiles, 55 
random variables, 55 
task view, 20, 55 

probability integral transform, 58 
probit link function, 122, 124 
probit regression, 121 
programming, 59 
projection, 213 
propensity scores , 219 
properties 

Windows, 6 
proportion, 76 
proportional hazards model, 

128, 154 
frailty, 128 
simulate data, 203 

proportional odds model, 124, 143 
proportionality assumption, 128 
pseudo R2, 121 
pseudorandom number 

generation, 55 
set seed, 59 

ps s_ f r variable, 192, 232 
psychometric models 

task view, 135 
psychometric models and methods 

task view, 20 
psychometrics, 133 

task view, 133 

q-q plot, 111, 172 
quadratic growth curve models, 126 
quantile regression, 130, 1^2 
quantile-quantile plot, lllt 172 
quantiles, 74 

probability density function, 56 
t distribution, 17 

quarter variable, 47 
quitting, 5 
quotes 

nested, 39 

R 
detach packages, 145 
Development Core Team, 1 
export SAS dataset, 29 
FAQ, 24 
Foundation for Statistical Com­

puting, 1 
graphical user interface, 4 
history, 1 
index, xxii 
installation, 2 
introduction, 1 
Project, 24 
reading SAS files, 27 

R archive network (CRAN), 2 
R Commander 

graphical user interface, 4, 7 
R2 for logistic regression, 121 
R-help mailing list, 24 
radius, 167 
ragged data, 211 
random coefficient model, 125, 126 
random effects model, 126, 151 

estimate, 125 
generating, 201 

random effects models, 135 
random intercept model, 125 
random number 

seed, 59, 206 
random slopes model, 126 
random variables 

density, 56 
generate, 55, 56 
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probability, 56 
quantiles, 56 

randomization group, 232 
randomized clinical trial, 227 
range 

axes, 179 
rank sum test, 81 
Rasch models, 135 
reading 

comma separated (CSV) files, 
27 

data, 63 
data with two lines per obs, 214 
dates, 26 
fixed format files, 26 
H T T P from URL, 28 
more complex fixed format files, 

26 
native format files, 25 
other files, 26 
other packages, 27 
R objects, 25 
variable format files, 211 
XML files, 28 

reading long lines, 26 
receiver operating characteristic curve, 

171, 190 
recoding variables, 37 
recover from error, 59 
rectangular grid, 175 
recursive partitioning, 134, 159 
redirect output, 31 
reference a variable, 62 
reference category, 94, 111 
regression, 93 

categorical predictor, 94 
diagnostic plots, 102 
diagnostics, 111 
forward stagewise, 130 
gamma, 121 
interaction, 95, 108 
least angle, 130 
lines, 174 
logistic, 121 
lognormal, 121 
no intercept, 95 

overdispersed binomial, 121 
overdispersed Poisson, 121 
parameterization, 94 
Poisson, 121 
probit, 121 
residuals, 100 
standardized residuals, 100 
stratified analysis, 96 
studentized residuals, 100 
test for heteroscedasticity, 102 

regular expressions, 35, 46 
rejection sampling, 208 
relative risk, 79 
reliability measures, 133 
remainder operator, 11 
remove 

dataframe from workspace, 14 
package from workspace, 14 
spaces from a string, 36 

rename variables, 33 
repeat steps for a set of variables, 

62 
repeated measures, 125 
replace a string within a string, 36 
replicating examples from the book, 

4 
reproducible analysis, 32 
resampling based inference, 75, 81, 

82 
reshape 

datasets, 43, 1^6 
residuals, 100 

analysis, 111 
correlated, 125 
plots, 111 
standardised, 100 
studentized, 100 

resources for new users, 8 
restore previous values, 192 
results from HELP study, 227 
ridge regression, 130 
right censored data, 171 
Ripley, Brian, 1 
Risk Assessment Battery, 230 
robust (empirical) variance, 

127, 152 



SUBJECT INDEX 

robust statistical methods 
regression, 129 
task view, 129 

robust statistical methods task view, 
20 

ROC 
analysis, 79 
curve, 171, 190 

rotating 
axis labels, 179 
text, 176 

round results, 50, 63 
row access, 12 
RR (relative risk), 79 
rug plot, 175 
running a script, 6 
running average, 205 

Samet, Dr, Jeffrey, 227 
sample a dataset, 42 
sample session, 4 
sample siae calculations 

analytic, 197 
sampling from a pathological distri­

bution, 208 
sandwich variance, 127, 152 
Sarkar, Deepayan, 1 
SAS 

matching parameterization, 94 
reading into R, 27 
write data to, 29 

save 
data, 65 
graphs, 180 
history of commands, 2 

save parameter estimates as dataset, 
131 

saving 
history of commands, 3 

scale 
log, 180 

scaling, 75 
scatterplot, 85, 106, 166 

lines, 174 
matrix, 167 

257 

multiple y values, 166 
points, 173 
separate plotting characters per 

group , 173 
smoothed line, 174 

scatterplot smoother, 106 
scraping data, 214 
script file, 4 

running, 6 
search for approximate string, 36 
search path, 6 
seed 

random numbers, 59 
selection 

model, 97 
sensitivity, 79, 171 
separate model fitting by group, 112 
separate plotting characters per group, 

173 
set operations, 34 
settings 

graphical, 178 
s e x r i s k variable, 136, 144> 232 
SF-36 short form health survey, 231 
shapes, 176 
short form (SF) health survey, 231 
shrinkage method 

lasso, 130 
side-by-side boxplots, 169 
sideways orientation 

boxplot, 169 
significance stars in R, 93, 109 
simplified interface, 7 
simulate 

generalized linear model random 
effects, 201 

logistic regression, 200 
simulate data 

Cox model, 203 
simulation studies 

generating logistic regression, 200 
simulation-based power calculations, 

198 
sine function, 50 
singular value decomposition, 54 
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size of graph, 177 
Smith College, 223 
smoothed line, 174 
smoothing, i^5, 172 

spline, 129, 183 
social sciences 

task view, 20, 93, 105, 121 
social supports, 231 
solve optimization problems, 51 
sorting, 44, 10 
sourcing commands, 4 
sparse matrix, 52 
spatial statistics 

task view, 20, 135, 213 
Spearman correlation, 80 
specificity, 79, 171 
specifying 

box around plots, 178 
color, 180 
design matrix, 94 
margin, 178 
point size, 177 
text size, 177 

split screen, 179 
split string, 36 
split-apply-combine strategy, 96 
spreadsheet, 29 
SPSS files, 27, 29 
SQL, 42 
square root, 49 
square root link function, 122 
squares, 176 
stagewise regression, 130 
standard deviation, 49 
standard error, 59 

parameter estimates, 102 
standardized residuals, 100 

mixed model, 125 
stars, 176 
starting R, 4 
Stata files, 27, 29 
statistical genetics task view, 20 
statistical learning task view, 20 
StatWeave, 32 
stem plot, 169 

stepwise model selection, 97 
straight line 

adding, 174 
stratified analysis, 96, 112 
string variable 

concatenating strings, 35 
extract characters, 34 
find a string, 35 
find approximate string, 36 
from numeric variable, 34 
length, 35 
remove spaces, 36 
replace a string, 36 

structural equation models, 135 
structured query language (SQL), 

42 
Student t-test, 81 
studentized residuals, 100 
style 

axes, 179 
line, 179 

sub variable, 105t 114 
subject index, xxii 
submatrix, 53 
subsetting, 42, 68, 70 
substance abuse treatment, 232 
substance of abuse, 232 
sub s t ance variable, 85} 232 
sum, 49 
summarize means by groups, 70 
summary statistics, 82 

mean, 73 
separately by group, 73 

sums of squares 
and cross products, 104 
Type III, 108 

sunflower plot, 167 
support, 24 
survey design, 131 
survey sampling, 135 
survival analysis, 82, 128, 135 

accelerated failure time model 
with frailty, 128 

Cox model, 154 
Kaplan-Meier plot, 171, 188 
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logrank test, 82, 90 
proportional hazards model, 128 
proportional hazards model with 

frailty, 128 
simulate data, 203 
task view, 20, 128, 171 

suspend execution for a time inter­
val, 48 

Sweave, 32 
sweep operator, 75 
symbols 

mathematical j 176 
plot, 173 

Systat files, 27 

t distribution, 7i, 75 
quantile, 17 

West, 81, 88 
table 

classification, 77 
cross-classification, 77 

tabulate binomial probabilities, 
206 

tall datasets 
reshaping, 43 

tangent function, 50 
tangle, 32 
task view, 19 

analysis of spatial data, 135 
Bayesian inference, 131 
cluster analysis, 133, 134 
graphics, 165 
multivariate models, 135 
multivariate statistics, 133 
optimization and mathematical 

programming, 51 
overview, 19 
probability distributions, 55 
psychometrics, 133, 135 
robust statistical methods, 129 
social sciences, 93, 105, 121 
spatial statistics, 213 
survival analysis, 128, 171 
time series, 127 

Temple Lang, Duncan, 1 

test 
characteristics, 79 
heteroscedasticity, 102 
interaction, 115 
joint null hypotheses, 98 
normality, 77 

test joint null hypotheses, 98, 99 
text 

adding, 176 
rotating, 176 

text size specification, 177 
thermometers, 176 
tick marks, 179 
Tierney, Luke, 1 
TIFF 

exporting, 181 
time 

elapsed, 47 
time series, 127 

task view, 20, 127 
time series data 

plotting, 216 
time variable, 47 

create, 47 
t ime variable, 147 
time varying covariates, 128 
time-to-event analysis, 128 
timing commands, 47 
titles, 175 
tolerance 

floating point comparisons, 51 
topic index, xxii 
transformed residuals 

mixed model, 125 
translations 

character, 37 
transpose 

datasets, 43, US 
datasets (long or tall to wide 

format), 44 
datasets (wide to long or tall 

format), 43 
matrix, 52 

trap error, 59 
t r e a t variable, 90, 232 
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trigonometric functions, 50 
trimmed mean, 74 
true positive, 171 
truncated normal random variables, 

58 
truncation, 50 
Tufte, Edward, 182 
Tukey, John, 182 

HSD (honest significant differ­
ences), 99, 118 

notched boxplot, 169 
two line data input, 214 
two sample t-test, 81, 88 
two-way ANOVA, 97, 114 

interaction plot, 170 
two-way tables, 86 
Type III sums of squares, 10S 

uniform random variables, 56 
uniform resource locator (URL), 28 
union, 34 
unique values, 41 
univariate distribution parameter es­

timation, 75 
univariate loess, 129 
University of Auckland, 1 
unstructured covariance matrix, 148 
unstructured working correlation, 

127 
upper to lower case conversions, 37 
Urbanek, Simon, 1 
URL, 28 

harvesting data, 214 
using the book, xxii 

values of variables, 31 
variable display, 31 
variable format files, Ml 
variable labels, 39 
variable number of arguments, 16 
variable reference, 62 
variables 

rename, 33 
variance, 223 
variance covariance matrix, 125 
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varimax rotation, 133, 157 
vector 

concatenation, 34 
extract elements, 13 
from a matrix, 54 
indexing, 10 
operations, 10 

vector operations 
efficiency, 59 

views 
task, 19 

vignettes (examples) of typical us­
age, 20 

visualize correlation matrix, 192 

warranty, 5 
weave, 32 
Web site for book, xxii 
weekday variable, 46 
Weibull distribution, 75 
weighted least squares, 129 
where to begin, xxii 
White variance, 152 
Wickham, Hadley, 19 
wide datasets 

reshaping, 43 
wide to long (tall) format conver­

sion, 43 
width of line, 179 
wiki, 24 
Wikoxon test, 81, 89 
Windows 

environment variables, 6 
installation, 2 
metafile, 181 
path, 6 
R FAQ, 2 

Wolfram Alpha, 208 
working correlation matrix, 127, lB5t 
working directory, 48, 49 
writing 

native format files, 29 
other packages, 29 
text files, 30 
unctions, 16 
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X*X matrix, 104 year variable, 47 
x-y plot, see scatterplot 
XML, 28 aero-inflated 

create file, 29 negative binomial regression, 
DocBook DTD, 30 124 
read file, 27 Poisson regression, 123, 
write files, 30 139 





R index 
References to the HELP examples are denoted in italics. The primary 
for a command is given in bold, 

) operator, 11, 35, 39 
# operator, 12 
<- operator, 10 
%% operator, 11 
& operator, 11, 192 
&/& operator, 11 
* operator, 11, 95 
+ operator, 11 
- operator, 11, 47 
,„ syntax, 9, 16, 205 
/ operator, 11 
: operator, 41, 60, 95 
< operator, 11 
<= operator, 11 
= operator, 10 
= = operator, 11, 42, 224 
> operator, 11 
>= operator, 11 
? operator, 8 
?? operator, 8 
[ operator, 10 
[[ operator, 11, 80 
$ operator, 13 
%in% operator, 34, 37 
"operator, 11, 49 
0 operator, 95 

ablineQ, 104, 146, 174, 174, 192, 
206, 216 

abs(), 49, 57, 98, 209 
acosQ, 50 
ad.test(), 77 
addmarginsQ, 77 

addsecondy(), 166, 183 
adj option, 176 
adjust option, 172 
aggregate(), 11, 73 
agrep(), 36 
AIC(), 97 
all.equal(), 51 
along, 194 
alphafmiQ, 209 
amer library, see library (amer) 
and operator, 11, 192 
anova object, 100 
anova(),97, 109, 116, 150, 

151 
any(), 192 
aov object, 15 
aov(), 96, 97, 116, 118 
apply(), 18, 57, 66, 225 
apropos (), 8 
Arima object, 97 
arima(), 127 
arithmetic operator, 11 
arrows(), 176 
as.character(), 26, 34 
as.data.frameQ, 14 
as+Date(), 26, 46, 47 
asiactor(), 37, 38, 89, 94, 94, 

114, 14% U&, 150, 
151, 171, I84 

asiormulaO, 93, 96, 113 
as,integer(), 50 
as,matrix(), 14 
as.nameQ, 62 

263 
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as.numeric(), 26, 34, 143, 201, 211, 
214, 216 

as.POSIXct(), 47 
as+POSIXlt(), 215, 216 
asinQ, 50 
assignf), 10, 62 
assignment operator, 10 
assocplotQ, 170 
at option, 166, 194 
atanQ, 50 
atan2(), 50 
attach(), 5, 14, 32, 64, 70, 82, 105, 

148, 219 
attributes{), 15, 33 
ave(), 73 
axes option, 172, 185 
axis(), 166, 179, 183 

barchartO, 168 
barplot(), 168, 185 
base option, 49 
BATCH, 6 
beta(), 50 
BIC(), 98 
binom.test(), 76 
binomial option, 136, 201 
bins option, 170 
biplot(), 159 
bmp(), 181 
boot library, see library (boot) 
boot object, 76 
boot(), 76 
boot.ci(), 76 
box.dot option, 156 
box,umbrella option, 150 
boxplot(), 115, 169 
bptestf), 102 
breaks option, 37, 111 
bty option, SB, 178, 185 
bug,report(), 24 
burnin option, 131 
bw option, 172 
bwplot(), 150, 169 
by option, 111, 190 
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by(), 96 
byrow option, 52, 185 

c(), 10, 17, 34, 39, 54, 70, 113, 190, 
199, 225 

cat(), 31, 41, 199 
cbind(), 13, 14, 44, 52, 66, 67, 79, 

80, 104, 133, 134, 156,162, 
206 

ceiling(), 50 
cex option, 159, 173, 176, 177, 189 
cex. axis option, 106 
cex. lab option, 106 
character(), 68, 115 
chartr(), 37 
chisq.test(), 78, 81 
choices option, 159 
choose(), 50 
chron library, see library(chron) 
ci.calc(), 17 
circles option, 167, 183 
circular library, see library (circular) 
citation(), 5, 22 
class(), 15, 33, 34 
clogit(), 125 
CMD 

BATCH, 6 
coda library, see library (coda) 
coding, 37 
coef(), 61, 96, 98, 99, 102, 110, 113, 

125, 153, 201 
coefficients (), 146 
coin library, see library(coin) 
col, 191 
col option, 89, ill, 115, 150, 172, 

173, 177, 180, 189 
colMeans(), 77 
colorkey option, 194 
colors(), 180 
colors .matrix (), 180 
colors.plotQ, 180 
colSums0, 77 
colwise(), 49, 64 
combinations(), 50 
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comment(), 33, 39, 65 
comparison operators, 11, 42 
conf.int option, 119, 171 
confMevel option, 76 
confint(), 103, 110 
constrOptimQ, 51 
contour(), 170 
contr+helmert(), 95 
contr,poly(), 95 
contr.SAS(), 95, 117 
contr.sum(), 95 
contrtreatment(), 95 
contrasts option, 95 
contrasts(), 94 
contributorsQ, 5 
convert .underscore option, 105 
cooke.distance(), 101 
coplot(), 168, 184 
cor(), 84, 134, 162, 192, 202 
cor.test(), 80 
correct option, 87 
correlation option, 148 
corstr option, 152 
cos(), 50 
covH unsealed, 105 
covfunO, 76 
ccK.zph(), 128 
coxph(), 128, 155, 203 
cph(), 128 
cronbach(), 133, 156 
cumprod(), 205 
cumsumQ, 205 
curve(), 172, 209 
cut(), 37, 57, 69 
cutoff option, 133, 157 
cvm.testQ, 77 

DO, 51 
data option, 32 
data(), 24 
data.entry(), 29 
data.frame(), 13, 13, 26, 39, 68, 70, 

99,111,167,205,215,217, 
225 

Date class, 46 

dbeta(), 56 
dbetabinf), 56 
dbinom(), 56, 206 
dcauchy(), 56 
dchisqO, 56 
demo(), 5 
demo(graphics), 165 
densityQ, 89, 172, 209 
densttyfunction option, 75 
det(), 54 
detachf), 5, 14, 32, 70, 113, 145, 

147 
detach (package), 14$ 
dev,off(), 180, 182, 21$ 
dexp(), 56 
df(), 56 
dffitsO, 101 
dgamma(), 56 
dgeom(), 56 
dhyper(), 56 
diag(), 53, 54, 153 
diag.panel option, 192 
diff(), 166, 183 
digits option, 32, 135 
dim(), 12, 42, 53 
dimnameeO, 57 
dinv.gaussianQ, 56 
direction option, 43 
directory structure, 26 
display. brewer.all(), 180 
dispmod library, see library (dispmod) 
dist(), 134, 162 
distribution option, 81, 89 
dlaplace(), 56 
dlnorm(), 56 
dlogis(), 56 
dnbinom(), 56 
dnorm(), 55, 56, 71, 88, 111 
dollarcentsf), 31 
dotchart(), 168 
dotpiot(), 168, 188 
downloadable (), 28 
dpois(), 56 
draw.circleQ, 176 
dropl(), 97 
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ds(), 70 
dfc(), 56, 11 
dunif(), 56 
duplicated(), 34, 41 
dweibull(), 56 

each option, 60, 201 
ecdf(), 172 
echo option, 4 
edit(), 29, 31, 33 
eigenQ, 54 
ellipse library, see library(ellipse) 
elrm library, see library(elrm) 
elrra(), 122 
else statement, 41, 60 
epitab(), 79 
epitools library, see library (epitools) 
equality operator, 10 
estimable(), 99 
eval(), 62 
exactRankTests library, 

see library (exact RankTests) 
example(), 8, 165 
exclude option, 77 
exp(), 49, 200, 201, 209 
expand,grid(), 62, 225 
expand.tableQ, 79 
expression(), 51, 71, 176 
extract operator, 13, 80 

factanalO, 133, 157 
factor(), 38, 70,94, 173 
factorial0, 50 
factors option, 133, 157 
FALSE, 11, 35 
family option, 121, 144, 1$2, ^ ¾ 

176 
familyO, 127 
file option, 31 
file(), 26 
file<access(), 49 
file,choose(), 49 
file.info(), 49 
files(), 49 
findFnQ, 8 
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findvalue(),225 
fisher.test(), 78, SI 
fit,contrast(), 99, 119 
fitdistr, 83 
fitdistr(), 75 
fitted(), 111 
fivenum(), 74, 83 
fix(), 29 
fixed option, 151 
fixed.effects(), 125 
floor(), 41,50, 225 
font option, 176 
for statement, 59, 113, 206, 211, 

224 
foreign library, see library(foreign) 
format option, 215 
format (), 31 
formulaQ, 221 
frailtyO, 128 
frailtypack library, see library(frailtypack) 
freq option. 111, 168 
frequency option, 127 
from option, 175, 190, 209 
functionQ, 17, 31, 41, 51, 57, 76, 

89, m, 166, 183, 191, 192, 
194, 205, 209, 225 

gam library, see library(gam) 
gam(), 129, U5 
gam.lo(), 129 
gam.s(), 129 
gamma(), 50 
gee library, see library(gee) 
gee(), 127, 152 
gendistQ, 205 
GenKern library, see library(GenKern) 
get(), 62, 63 
geterrmessage(), 59, 65 
getwd(), 48 
ggplot2 library, see library(ggplot2) 
glm object, 97, 100 
glm(), 79, 121, 121, 122, 136, 138, 

201, 218, 221 
glm+binomial ,disp (), 122 
glm.midsO, 219 
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glm.nb(), 123, 140 
gls object, 97 
gls(), US 
gmodels library, see library(gmodels) 
goodfit(), 123, 139 
gray.colorsQ, 172 
greater than operator, 11 
grep(), 35, 211, 214 
grid library, see library(grid) 
grid(), 11, 175 
grid.linesQ, 175 
group option, 173 
groupedData(), 125, 199 
gsub(), 36, 211, 214, %15 
gtools library, see library (gtools) 

h option, 174 
hat values (), 101 
hclust(), 134, 162 
head(), 31, 64, 80, 215 
height option, 177 
heights option, 185 
help option, 20 
help(), 5, 8 
help (.Random, seed), 59 
help(Control),59 
help(Extract), 80 
help (influence, measures), 101 
help(list), 80 
help(plotmath), 176 
help(regex), 35 
help.search(), 8 
help.startQ, 5, 8 
hist(), 83, 111, 168, 185, 191 
history(), 48 
Hmisc library, see library (Hmisc) 
horizontal option, 169 
htmlise(), 30 
hwriter library, see library(hwriter) 

i, 51 
1(),98 
id option, 152 
identifyQ, 177 
idvar option, 43, 148 
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if statement, 41, 57, 60, 211 
ifelseQ, 60, 114, 183, 185, 194, %00 
image(), 170, 172 
in statement, 113 
inches option, 183 
index operator, 13, 80 
influence+measures(), 100, 101 
instalLpackagesQ, 18, 19, 24 
inter action.plot(), 114, 170 
intersect(), 34 
interval option, 51, 103, 107 
irr library, see library(irr) 
is.data+frame()> 13, 14 
is.finite(), 192 
is.mfimteQ, 40 
is.listQ, 11 
is.matnx(), 12, 14 
is.na(), 39, 40, 66, 68, 69 
is.nanf), 40 
is.vector(), 12 

jitter(), 85, 174 
jpeg(), 181 

kappa2(), 80 
kernel option, 172 
KernSur(), 172 
ks.testf), 81, 89 

lab option, 179 
label option, 194 
labels option, 37, 166 
lagkQ, 41 
lambda option, 130 
lapply(), 18, 225 
lars library, see library(lars) 
lars(), 130 
las option, 179 
lattice library, see library (lattice) 
layout option, 150 
layout(), 179 
lda(), 134, 161 
legend option, 177, 206 
legend(), 71, 90, 106, 107,177,185, 

189, 206, 216 
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length option, 175, 209 
length(), 17, 41, 4 1 , 53, 57, 96, 118, 

115, 134, 161, 206, 211, 
213, 215, 216 

less than operator, 11 
level. colois(), 194 
levelplotQ, 194 
levels option, 94, 105 
library(), 18, 20, 24 
library (amer), 22, 129 
library(boot),21, 76 
library (Chron), 22 
library(chron), 46 
library (circular), 22, 170 
library (class), 21 
library (cluster), 21 
library (coda), 22, 131, 155, 156 
library (code tools), 21 
hbrary(coin), 22, 81, 89 
library(datasets), 20 
library(dispmod), 22, 122 
library (ellipse), 22, 176, 194 
library(elrm), 22, 122 
library(epitools), 22, 79, 81, 180 
library(exactRankTests), 22, 81 
library(foreign), 21, 29, 65, 105,182 
library(frailtypack), 22, 128 
library (gam), 22, 129, 145 
library(gee), 22, 127, 152 
library(GenKern), 22, 172 
library (ggplot2), 22, 165, 173 
library(gmodels), 22, 99, 119 
library (graphics), 21 
library(grDevices), 21 
library(grid), 21, 165, 175 
library(gtools), 22, 50 
library(Hmisc), 18, 22, 40,197, 202, 

217 
library(hwriter), 30 
library(irr), 22, 80 
library(KeraSmooth), 21 
library(lars), 23, 130, 141 
library (lattice), 21, 150, 165, 168, 

169, 173, 184, 194 
hbrary(lme4), 23, 127, 153, 201 

library(lmtest), 23, 102 
library(lpSolve), 23, 51, 226 
library (maps), 23, 213 
library(MASS), 21 , 57, 75, 83, 97, 

111, 122-124, 129, 130, 134, 
140, 143, 161, 198 

library (Matching), 23, 221 
library(Matrix), 21, 52 
ubrary(MCMCpack), 23, 131, 155 
library (methods), 21 
library(mgcv), 21 
library (mice), 23, 219 
u b r a r y f m i t o o l s ) ^ , 219 
library(rnix), 23, 219 
library(multcomp), 23, 99 
library(multilevel), 23, 133, 156 
hbrary(nlme), 22, 98,125-127, 148, 

151, 198 
library(nnet), 22, 23, 122 
library(nortest), 23, 77 
library (odfWeave), 23, 32 
library(plotrix), 23, 176 
library(plyr), 23, 49, 64, 96 
library(prettyR), 23, 30, 77, 86 
library(pscl), 23, 123, 124, 139 
library(pwr), 23, 197 
library(quantreg), 23, 130, I42 
library(Rcmdr), 7, 23 
library(RColorBrewer), 23, 180 
library (reshape), 23, 33, 43, 44 
library (rrns), 23, 121, 128 
library (RMySQL), 23, 42 
library(ROCR), 23, 80,165,171,190 
library(rpart), 22, 134, 159 
library(RSQLite), 24,42 
hbrary(scatterplot3d), 24, 170 
library(sos), 8, 24 
library (spatial), 22 
library (splines), 21 
library(sqldf), 24, 42 
library (stats), 21 
library (stats4), 21 
library (survey), 24, 131 
library(survival), 22, 82, 91, 125, 

128, 155, 171, 189, 203 
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library(tcltk), 21 
library(tmvtnorm), 24, 58 
library (tools), 21 
library (utils), 21 
library(vcd), 24, 123, 1S9 
library(VGAM), 24, 56, 125, 1& 
library(XML), 24, 28, 30 
library(Zelig), 19, 24 
license (), 5 
lillie.test()? 77 
lines(), 71, 83, 89, 106, ill, 166, 

173, 174, 174, 175, 183, 
185, 190, 206, 209, 216 

link option, 121 
list(), 11, 17, 43, 57, 11, 115, 150 
list+files(),49 
lm object, 15, 97, 98, 100, 109 
lm(), 32, 61, 93, 95, 96, 109, 113, 

11% 192, 219-221 
by grouping variable, 96 

lm,ridge(), 130 
lme object, 97 
lme(), 125-127, 151, 199 
lme4 library, see library(lme4) 
lmer(), 127, 153, 201 
lmtest library, see library(lmtest) 
loQ, 129, 145 
loadQ, 25, 135 
loadhistory(), 48 
locator (), 177 
loess(), 174 
log option, 180 
log(), 49 
logl0(), 49 
log2(), 49 
logical expressions, 37 
logical operator, 11 
logLik(), 97, 116 
loglin(), 124 
loglm(), 124 
lower.panel option, 192 
lowess(), 106, 166, 174, 183, 185 
IpSolve library, see library(lpSolve) 
lrm(), 121 

Lty option, 103, 106, 171, 177, 179, 
189, 206, 209 

lwd option, 89, 103, 106, 146, 179, 
183, 189, 206, 209 

main option, 168, 175 
mantelhaen, test (), 78 
mapplyO, 18, 104 
maps library, see library (maps) 
mar option, 111, 178, 185 
MASS library, see library(MASS) 
Match(), 221 
match(), 34 
MatchBalance(), 222 
Matching library, see library (Matching) 
matlines(), 166 
matplotQ, 103, 104, 107, 166 
matpointsO, 107, 166 
Matrix library, see library (Matrix) 
matrix(), 12, 52, 52, 53, 57, 96, 98, 

113, 185, 198, W2, W6 
max option, 56 
max(), 49, 57, 73, 83, 111, 185, 191, 

213, 225 
maximum option, 51 
mcmc option, 131 
MCMCbinaryChangeO, 132 
MCMCdynamicEIO. 132 
MCMCdynamicIRTld(), 132 
MCMCfaetanal(), 132 
MCMChierEI(), 132 
MCMCirtld(), 132 
MCMCirtHierld(), 132 
MCMCirtKd(), 132 
MCMCirtKdHet(), 132 
MCMCirtKdRob(), 132 
MCMClogit(), 131, 132 
MCMCmetroplR(), 132 
MCMCmixfaetanalQ, 132 
MCMCmnlO, 132 
MCMCoprobit(), 132 
MCMCord£actanal(), 132 
MCMCpack library, see library(MCMCpack) 
MCMCpoisson(), 131, 132, 155 
MCMCpoissonChangeQ, 132 
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MCMCprabit(), 132 
MCMCqua.ntreg(), 132 
MCMCregress(), 131, 132 
MCMCSVDreg(), 132 
MCMCtobit(), 132 
mcnemar.test(), 78 
mean option, 55 
mean(), 5,13,18, 49, 70, 71, 73-75, 

S3, 175, 202, 205, 224 
median(), 73, 83 
merge(), 45 
method option, 128, 134, 155, 159, 

162 
methodeQ, 15 
methods (plot), 166 
mfcol option, 111, 178 
mfrow option, 102, 111, 178 
mice library, see library(mice) 
mlce(), 219 
min option, 56 
min(), 49, 65, 73, 83, 111, 209, 213 
mitools library, see library (mi tools) 
mix library, see library(mix) 
modeLmatrixQ, 104 
modulus operator, 11 
monthsQ, 47 
mosaicplot(), 170 
mtext(), 166, 179, 183 
multcomp library, set library (multcomp) 
multilevel library, see library(multilevel) 
multinom(), 122 
mvrnorm(), 57, 198 

NA, 41 
na.action option, 39, 148 
na.actionQ, 39 
na.exclude(), 40 
naiafl(), 40 
na.omit(), 39, 40, 133, 158 
na+pattern(), 40, 217 
na,rm option, 39 
na.strings, 40 
na.strings option, 40 
names option, 169 

names(), 14, 33, 38, 41, 43, 64, 88, 
91, 109, 212 

ncharO, 35, 214 
ncol option, 206 
ncol(), 57 
negative.bmomial(), 122 
nlm(), 51 
nlme library, see library(nlme) 
nlme object, 97 
nls object, 97 
nls(), 129 
nnet library, see library(nnet) 
no-intercept operator, 95 
nortest library, see library (nor test) 
riot operator, 11, 35, 39 
notch option, 115, 169 
nrow option, 98, 206 
nrows, 26 
NULL, 175 
numeric operator, 11 
numericO, 59, 68, 96,198, 209, 211, 

224 
nx option, 175 
ny option, 175 

objects 
removing, 14 

objects (), 14 
oddsratio(), 79 
oddsratio. fisher (), 81 
odfWeave library, see library (odfWeave) 
oma option, 178 
omd option, 178 
omi option, 178 
on,exit(), 191 
oneway_test(), 81, 89 
optim(), 51 
optimize 0 , 51 
optionsQ, 15 

contrasts, 94 
digits to display, 32, 63 
restore previous values, 192 
show .signif.stars, 93, 109 
width, 63 
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or operator, 11, 35, 41 
order option, 127 
order(), 44, 76, 167, 264 
ordered(), 94 
origin option, 215 

package option, 24 
pairs(), 167, 196, 192 
panel option, 184, 194 
panel.corrgram(), 194 
panel .hist (), 191 
panel.lm(), 192 
panel. polygonQ, 194 
panel .smooth(), 192 
par 

mfrow, 178 
par(), 102, 111, 176, 177, 177, 178, 

185, 191 
par.settings option, 150 
paste(), 16, 31, 35, 71, 90, 168, 190 
pbetaQ, 56 
pbetabinQ, 56 
pbinomQ, 56 
pcauchyf), 56 
pch, 192 
pch option, 106, 107, 166, 

173, 216 
pchisq(), 56, 116 
pdf(), 180, 213 
pdfeval(), 209 
pearson+test(), 77 
performance(), SO, 171, 190 
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